Advertisement

Wireless Networks

, Volume 23, Issue 7, pp 2135–2143 | Cite as

Joint TAS/SC and power allocation for IAF relaying D2D cooperative networks

  • Lingwei Xu
  • Hao Zhang
  • Jingjing Wang
  • T. Aaron Gulliver
Article

Abstract

In this paper, the outage probability (OP) performance of multiple-relay-based incremental amplify-and-forward relaying device-to-device networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. The exact closed-form expressions for OP of the optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated for performance optimization. Then the OP performance under different conditions is evaluated through numerical simulations to verify the analysis. The simulation results showed that optimal TAS scheme has a better OP performance than suboptimal TAS scheme, but the performance gap between the optimal and suboptimal schemes diminishes by increasing the number of antennas at the source; the fading coefficient, the number of cascaded components, the relative geometrical gain, the number of antennas, and the power-allocation parameter have an important influence on the OP performance.

Keywords

D2D communication N-Nakagami fading channels Incremental amplify-and-forward Outage probability Transmit antenna selection Power allocation 

Notes

Acknowledgments

The authors would like to thank the referees and editors for providing very helpful comments and suggestions. This project was supported by National Natural Science Foundation of China (Nos. 61304222, 61301139), Natural Science Foundation of Shandong Province (No. ZR2012FQ021), Shandong Province Outstanding Young Scientist Award Fund (No. 2014BSE28032).

References

  1. 1.
    Mumtaz, S., Huq, K. M. S., & Rodriguez, J. (2014). Direct mobile-to-mobile communication: Paradigm for 5G. IEEE Wireless Communications, 21(5), 14–23.CrossRefGoogle Scholar
  2. 2.
    Uysal, M. (2006). Diversity analysis of space-time coding in cascaded rayleigh fading channels. IEEE Communication Letters, 10(3), 165–167.CrossRefGoogle Scholar
  3. 3.
    Gong, F. K., Ge, J., & Zhang, N. (2011). SER analysis of the mobile-relay-based M2M communication over double Nakagami-m fading channels. IEEE Communication Letters, 15(1), 34–36.CrossRefGoogle Scholar
  4. 4.
    Karagiannidis, G. K., Sagias, N. C., & Mathiopoulos, P. T. (2007). N*Nakagami: a novel stochastic model for cascaded fading channels. IEEE Transactions on Communication, 55(8), 1453–1458.CrossRefGoogle Scholar
  5. 5.
    Ilhan, H., Uysal, M., & Altunbas, I. (2009). Cooperative diversity for intervehicular communication: Performance analysis and optimization. IEEE Transactions on Vehicular Technology, 58(7), 3301–3310.CrossRefGoogle Scholar
  6. 6.
    Gong, F. K., Ye, P., Wang, Y., & Zhang, N. (2012). Cooperative mobile-to-mobile communications over double Nakagami-m fading channels. IET Communications, 6(18), 3165–3175.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Xu, L. W., Zhang, H., Lu, T. T., & Gulliver, T. A. (2015). Outage probability analysis of the VAF relaying M2M networks. International Journal of Hybrid Information Technology, 8(5), 357–366.CrossRefGoogle Scholar
  8. 8.
    Xu, L. W., Zhang, H., Liu, X., & Gulliver, T. A. (2015). Performance analysis of FAF relaying M2M cooperative networks over N-Nakagami fading channels. International Journal of Signal Processing, Image Processing and Pattern Recognition, 8(5), 249–258.CrossRefGoogle Scholar
  9. 9.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ikki, S. S., & Ahmed, M. H. (2011). Performance analysis of incremental-relaying cooperative-diversity networks over Rayleigh fading channels. IET Communications, 5(3), 337–349.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Yang, C., Wang, W., Chen, S., & Peng, M. (2011). Outage performance of orthogonal space-time block codes transmission in opportunistic decode-and-forward cooperative networks with incremental relaying. IET Communications, 5(1), 61–70.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Xu, L. W., Zhang, H., Lu, T. T., & Gulliver, T. A. (2015). Performance analysis of the IAF relaying M2M cooperative networks over N-Nakagami fading channels. Journal of Communications, 10(3), 185–191.CrossRefGoogle Scholar
  13. 13.
    Yang, L. (2010). MIMO systems with transmit antenna selection and power allocation over correlated channels. Wireless Personal Communications, 55(2), 225–235.CrossRefGoogle Scholar
  14. 14.
    Suraweera, H. A., Smithnd, P. J., Nallanathan, A., & Thompson, J. S. (2011). Amplify-and-forward relaying with optimal and suboptimal transmit antenna selection. IEEE Transactions on Wireless Communication, 10(6), 1874–1885.CrossRefGoogle Scholar
  15. 15.
    Yeoh, P. L., Elkashlan, M., Yang, N., Costa, D. B. D., & Duong, T. Q. (2013). Unified analysis of transmit antenna selection in MIMO multi-relay networks. IEEE Transactions on Vehicular Technology, 62(2), 933–939.CrossRefGoogle Scholar
  16. 16.
    Ochiai, H., Mitran, P., & Tarokh, V. (2006). Variable-rate two-phase collaborative communication protocols for wireless networks. IEEE Transactions on Vehicular Technology, 52(9), 4299–4313.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Information Science and TechnologyQingdao University of Science and TechnologyQingdaoChina
  2. 2.College of Information Science and EngineeringOcean University of ChinaQingdaoChina
  3. 3.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada

Personalised recommendations