Wireless Networks

, Volume 23, Issue 4, pp 1249–1266 | Cite as

Delay and energy consumption analysis of priority guaranteed MAC protocol for wireless body area networks

  • Muhammad Babar Rasheed
  • Nadeem Javaid
  • Muhammad Imran
  • Zahoor Ali Khan
  • Umar Qasim
  • Athanasios Vasilakos
Article

Abstract

Wireless body area networks are captivating growing interest because of their suitability for wide range of applications. However, network lifetime is one of the most prominent barriers in deploying these networks for most applications. Moreover, most of these applications have stringent QoS requirements such as delay and throughput. In this paper, the modified superframe structure of IEEE 802.15.4 based MAC protocol is proposed which addresses the aforementioned problems and improves the energy consumption efficiency. Moreover, priority guaranteed CSMA/CA mechanism is used where different priorities are assigned to body nodes by adjusting the data type and size. In order to save energy, a wake-up radio based mechanism to control sleep and active modes of body sensors are used. Furthermore, a discrete time finite state Markov model to find the node states is used. Analytical expressions are derived to model and analyze the behavior of average energy consumption, throughput, packet drop probability, and average delay during normal and emergency data. Extensive simulations are conducted for analysis and validation of the proposed mechanism. Results show that the average energy consumption and delay are relatively higher during emergency data transmission with acknowledgment mode due to data collision and retransmission.

Keywords

Wireless body area networks Slotted CSMA/CA protocol Inter-arrival time Wakeup radio mechanism 

References

  1. 1.
    Ahmad, A., Javaid, N., Khan, Z. A., Imran, M., & Alnuem, M. (2014). iA-MAC: improved Adaptive Medium Access Control protocol for Wireless Body Area Networks. In Proceedings of the 14th international symposium on communications and information technologies (pp. 156–160), Sept 26–26, 2014, Incheon, Korea. Google Scholar
  2. 2.
    Fang, G., & Dutkiewicz, E. (2009). BodyMAC: Energy efficient TDMA-based MAC protocol for wireless body area networks. In 9th International symposium on communications and information technology (pp. 1455–1459). IEEE, ISCIT, 2009.Google Scholar
  3. 3.
    Marinkovic, S., Spagnol, C., & Popovici, E. (2009). Energy-efficient TDMA-based MAC protocol for wireless body area networks In Third international conference on sensor technologies and applications. SENSORCOMM’09 (pp. 604–609). IEEE, 2009.Google Scholar
  4. 4.
    Semprebom, Tiago, Montez, C., & Vasques, F. (2013). (m, k)-firm pattern spinning to improve the GTS allocation of periodic messages in IEEE 802.15. 4 networks. EURASIP Journal on Wireless Communications and Networking, 1, 1–15.Google Scholar
  5. 5.
    Park, P., Marco, P. D., Fischione, C., & Johansson, K. H. (2013). Modeling and optimization of the IEEE 802.15. 4 protocol for reliable and timely communications. IEEE Transactions on Parallel and Distributed Systems, 24(3), 550–564.CrossRefGoogle Scholar
  6. 6.
    Pollin, S., Ergen, M., Ergen, S. C., Bougard, B., Perre, L., Moerman, I., et al. (2008). Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Transactions on Wireless Communication, 7(9), 33593371.CrossRefGoogle Scholar
  7. 7.
    Johansson, P., Kazantzidis, M., Kapoor, R., & Gerla, M. (2001). Bluetooth: An enabler for personal area networking. IEEE Network, 15(5), 28–37. doi:10.1109/65.953231.CrossRefGoogle Scholar
  8. 8.
    Bangash, J. I., Abdullah, A. H., Anisi, M. H., & Khan, A. W. (2014). A survey of routing protocols in wireless body sensor networks. Sensors, 14(1), 1322–1357.CrossRefGoogle Scholar
  9. 9.
    Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A survey on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys and Tutorials, 16(3), 1635–1657. doi:10.1109/SURV.2014.012214.00007.CrossRefGoogle Scholar
  10. 10.
    Hayajneh, T., Almashaqbeh, G., Ullah, S., & Vasilakos, A. V. (2014). A survey of wireless technologies coexistence in WBAN: Analysis and open research issues. Wireless Networks, 20(8), 2165–2199. doi:10.1007/s11276-014-0736-8.CrossRefGoogle Scholar
  11. 11.
    Ullah, S. (2013). RFID-enabled MAC protocol for WBAN. In IEEE international conference on communications (ICC) (pp. 6030–6034). IEEE, 2013.Google Scholar
  12. 12.
    Ullah, S., & Kwak, K. S. (2012). An ultra-low-power and traffic-adaptive medium access control protocol for wireless body area network. Journal of Medical Systems, 36(3), 1021–1030.CrossRefGoogle Scholar
  13. 13.
    Ameen, M. A., Ullah, N., Chowdhury, M. S., Islam, S. R., & Kwak, K. (2012). A power efficient MAC protocol for wireless body area networks. EURASIP Journal on Wireless Communications and Networking, 1, 1–17.CrossRefGoogle Scholar
  14. 14.
    Ullah, S., Higgins, H., Shen, B., & Kwak, K. S. (2010). On the implant communication and MAC protocols for WBAN. International Journal of Communication Systems, 23(8), 982–999.Google Scholar
  15. 15.
    Park, P., Marco, P. D., Fischione, C., & Johansson, K. H. (2013). Modeling and optimization of the IEEE 802.15.4 protocol for reliable and timely communications. IEEE Transactions on Parallel and Distributed Systems, 24(3), 550–564. doi:10.1109/TPDS.2012.159.CrossRefGoogle Scholar
  16. 16.
    Javaid, N., Ahmad, A., Rahim, A., Khan, Z. A., Ishfaq, M., & Qasim, U. (2014). Adaptive medium access control protocol for wireless body area networks. International Journal of Distributed Sensor Networks. doi:10.1155/2014/254397.Google Scholar
  17. 17.
    Rahim, A., Javaid, N., Aslam, M., Rahman, Z., Qasim, U., & Khan, Z. A. (2012) A comprehensive survey of MAC protocols for wireless body area networks. In Seventh international conference on broadband, wireless computing, communication and applications (BWCCA) (pp. 434–439), 12–14. doi:10.1109/BWCCA.2012.77.
  18. 18.
    Ullah, S., Imran, M., & Alnuem, M. (2014). A hybrid and secure priority-guaranteed MAC protocol for wireless body area network. International Journal of Distributed Sensor Networks, 2014, 481761. doi:10.1155/2014/481761.CrossRefGoogle Scholar
  19. 19.
    Liu, B., Yan, Z., & Chen, C. W. (2013). MAC protocol in wireless body area networks for E-health: Challenges and a context-aware design. IEEE Wireless Communications, 20(4), 64–72.CrossRefGoogle Scholar
  20. 20.
    Park, P., Marco, P. D., Fischione, C., & Johansson, K. H. (2013). Modeling and optimization of the IEEE 802.15. 4 protocol for reliable and timely communications. IEEE Transactions on Parallel and Distributed Systems, 24(3), 550–564.CrossRefGoogle Scholar
  21. 21.
    Park, P., Fischione, C., & Johansson, K. H. (2013). Modeling and stability analysis of hybrid multiple access in the IEEE 802.15.4 protocol. ACM Transactions on Sensor Networks (TOSN), 9(2), 13–30.CrossRefGoogle Scholar
  22. 22.
    Almashaqbeh, G., Hayajneh, T., Vasilakos, A. V., & Mohd, B. J. (2014). QoS-aware health monitoring system using cloud-based WBANs. Journal of Medical Systems, 38(121), 1–20. doi:10.1007/s10916-014-0121-2.Google Scholar
  23. 23.
    Almashaqbeh, G., Hayajneh, T., & Vasilakos, A. V. (2014) A cloud-based interference-aware remote health monitoring system for non-hospitalized patients. In Proceedings of the IEEE 12th global communication conference (IEEE Globecom’14), Austin, TX, USA, 2014.Google Scholar
  24. 24.
    Khan, Z. A., Rasheed, M. B., Javaid, N., & Robertson, B. (2014). Effect of packet interarrival time on the energy consumption of beacon enabled MAC protocol for body area networks. Procedia Computer Science, 32, 579–586.CrossRefGoogle Scholar
  25. 25.
    Pletcher, N., Gambini, S., & Rabaey, J. M. (2008). A 2 GHz 52 W wake-up receiver with 72 dBm sensitivity using uncertain-IF architecture. In Conference proceedings, IEEE international solidstate circuits conference, San Francisco, CA (pp 525–526), 2008.Google Scholar
  26. 26.
    Ansari, J., Pankin, D., & Mhnen, P. (2009). Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. International Journal of Wireless Information Networks, 16(3), 118–130.CrossRefGoogle Scholar
  27. 27.
    Gu, L., & Stankovic, J. A. (2004) Radio-triggered wake-up capability for sensor networks. In Proceedings of 10th IEEE Real-time and embedded technology and applications symposium, RTAS (pp. 27–36), 25–28. doi:10.1109/RTTAS.2004.1317246.
  28. 28.
    Bas, V. D., Kavelaars, W., & Langendoen, K. (2009). A prototype low-cost wakeup radio for the 868 MHz band. International Journal of Sensor Networks, 5(1), 22–32.CrossRefGoogle Scholar
  29. 29.
    Zhu, J., Chunfend, L., & Tao, Z. (2013). Performance analyses and improvements for IEEE 802.15.4 CSMA/CA scheme in wireless multihop sensor networks based on HTC algorithm. International Journal of Distributed Sensor Networks, 2013, 452423. doi:10.1155/2013/452423.CrossRefGoogle Scholar
  30. 30.
    Enz, C. C., Hoiydi, A. E., Decotignie, J. D., & Peiris, V. (2004). WiseNET: An ultralow power wireless sensor network solution. Computer, 37(8), 62–70. doi:10.1109/MC.2004.109.CrossRefGoogle Scholar
  31. 31.
    Levy, Y., & Yechiali, U. (1975). Utilization of idle time in an M/G/1 queueing system. Management Science, 22(2), 202–211.CrossRefMATHGoogle Scholar
  32. 32.
    Hayes, J. F., & Babu, T. V. J. G. (2004). Modeling and analysis of telecommunications networks. New York: Wiley.CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Pletcher, N., Gambini, S., & Rabaey, J. (2007). A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes. In Custom integrated circuits conference (CICC), Sep 16–19, San Jose, CA.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Muhammad Babar Rasheed
    • 1
  • Nadeem Javaid
    • 1
  • Muhammad Imran
    • 2
  • Zahoor Ali Khan
    • 3
    • 4
  • Umar Qasim
    • 5
  • Athanasios Vasilakos
    • 6
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.College of Computer and Information SciencesKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Faculty of EngineeringDalhousie UniversityHalifaxCanada
  4. 4.CISHigher Colleges of TechnologyAbu DhabiUnited Arab Emirates
  5. 5.University of AlbertaEdmontonCanada
  6. 6.Lulea University of TechnologyLuleaSweden

Personalised recommendations