Wireless Networks

, Volume 23, Issue 3, pp 889–918 | Cite as

Energy-efficient node selection in application-driven WSN

  • Bruno MarquesEmail author
  • Manuel Ricardo


The growth of wireless networks has resulted in part from requirements for connecting people and advances in radio technologies. Wireless sensor networks are an example of these networks in which a large number of tiny devices interacting with their environments may be inter-networked together and accessible through the Internet. As these devices may be scattered in an unplanned way, a routing protocol is needed. The RPL protocol is the IETF proposed standard protocol for IPv6-based multi-hop WSN. RPL requires that communication paths go through a central router which may provide suboptimal paths, not considering the characteristics of the applications the nodes run. In this paper is proposed an Application-Driven extension to RPL which enables to increase the WSN lifetime by limiting the routing and forwarding functions of the network mainly to nodes running the same application. As nodes may join a network at a non predictable time, they must be synchronized with respect to their application duty cycles. Therefore, nodes have to wake up and sleep in a synchronized way. In this paper it is also proposed such synchronization mechanism. The results confirm that the proposed solutions provide lower energy consumption and lower number of packets exchanged than the conventional RPL solution, while maintaining fairness and the packet reception ratio high.


Wireless sensor network (WSN) Energy efficiency Nodes synchronization Cross-layer 



This work was financed by the Project “NORTE-07-0124-FEDER-000056” by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF), and by national funds, through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia (FCT) within the fellowship “SFRH/BD/ 36221/2007”. Authors would like to thank also the support from Faculty of Engineering, University of Porto, to thank the support from the INESC TEC, and to thank the support from the School of Technology and Management of Viseu.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

The work does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Accettura, N., & Piro, G. (2014). Optimal and secure protocols in the IEFT 6TiSCH communication stack. In Proceedings of IEEE international symposium on industrial electronics (ISIE).Google Scholar
  2. 2.
    Akyildiz, I. F., Vuran, M. C., Akan, O. B., & Su, W. (2006). Wireless sensor networks: A survey revisited. Computer Network Journal (Elsevier Science).Google Scholar
  3. 3.
    Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568. doi: 10.1016/j.adhoc.2008.06.003.CrossRefGoogle Scholar
  4. 4.
    Baccelli, E., Philipp, M., & Goyal, M. (2011). The P2P-RPL routing protocol for IPv6 sensor networks: Testbed experiments. In: 2011 19th international conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–6) (2011).Google Scholar
  5. 5.
    BeagleBone Black. (2014).
  6. 6.
    Boudec, J. (2010). Performance evaluation of computer and communication systems. Computer and communication sciences. EFPL Press.
  7. 7.
    Catarinucci, L., Colella, R., Del Fiore, G., Mainetti, L., Mighali, V., Patrono, L., et al. (2014). A cross-layer approach to minimize the energy consumption in wireless sensor networks. International Journal of Distributed Sensor Networks, 2014, 11. doi: 10.1155/2014/268284.CrossRefGoogle Scholar
  8. 8.
    Chipcon Products and Texas Instruments. (2006). 2.4 GHz IEEE 802.15.4/ZigBee-ready RF transceiver. Document SWRS041.Google Scholar
  9. 9.
  10. 10.
    Culler, D. E. (2008). Wireless mesh networks promise low power ip-based connectivity. Industrial Ethernet Book, 49, 16–22.Google Scholar
  11. 11.
    Dunkels, A. (2013). Contiki OS, open source, highly portable, multi-tasking operating system for memory-efficient networked embedded systems and wireless sensor networks.
  12. 12.
    Dunkels, A., Osterlind, F., Tsiftes, N., & He, Z. (2007). Software-based on-line energy estimation for sensor nodes. In EmNets ’07: Proceedings of the 4th workshop on Embedded networked sensors (pp. 28–32). New York, NY: ACM. doi: 10.1145/1278972.1278979.
  13. 13.
    Fasolo, E., Rossi, M., Widmer, J., & Zorzi, M. (2007). In-network aggregation techniques for wireless sensor networks: A survey. Wireless Communications, IEEE, 14(2), 70–87. doi: 10.1109/MWC.2007.358967.CrossRefGoogle Scholar
  14. 14.
    Montenegro, G., Kushalnagar, N., & Culler, D. (2007). Transmission of IPv6 packets over IEEE 802.15.4 networks. In IETF.Google Scholar
  15. 15.
    Hester, L., Huang, Y., Andric, O., Allen, A., & Chen, P. (2002) NeuRon netform: A self-organizing wireless sensor network. In Proceedings of the eleventh international conference on computer communications and networks (pp. 364–369).Google Scholar
  16. 16.
    Hui, J., & Culler, D. (2008). Extending ip to low-power, wireless personal area networks. Internet Computing, IEEE, 12(4), 37–45. doi: 10.1109/MIC.2008.79.CrossRefGoogle Scholar
  17. 17.
    IEEE Computer Society. (2006). IEEE Standard for Information technology— Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs).Google Scholar
  18. 18.
    IEEE-Computer-Society. (2006). IEEE Std 802.15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs). Revision of IEEE Std 802.15.4-2003.Google Scholar
  19. 19.
    IETF Network Working Group. (2003). Ad-hoc on-demand distance vector (AODV) routing algorithm.
  20. 20.
    Jain, R., Chiu, D. M., & Hawe, W. (1998). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. CoRR cs.NI/9809099 (1998).
  21. 21.
    JENNIC. (2006). Calculating 802.15.4 data rates. Application Note: JN-AN-1035.Google Scholar
  22. 22.
    Khan, M. R. H., Hossain, M. A., & Mukta, M. S. H. (2008). Zigbee cross layer optimization and protocol stack analysis on wireless sensor network for video surveillance. In International conference on electronics, computer and communication (ICECC 2008) (pp. 795–799). Bangladesh: University of Rajshahi.Google Scholar
  23. 23.
    Koushanfar, F., Taft, N., & Potkonjak, M. (2006) Sleeping coordination for comprehensive sensing using isotonic regression and domatic partitions. In INFOCOM 2006. Proceedings of 25th IEEE international conference on computer communications (pp. 1–13). doi: 10.1109/INFOCOM.2006.276.
  24. 24.
    Latré, B., Mil, P. D., Moerman, I., Dhoedt, B., Demeester, P., & Dierdonck, N. V. (2006). Throughput and delay analysis of unslotted IEEE 802.15.4. JNW, 1(1), 20–28.CrossRefGoogle Scholar
  25. 25.
    Levis, P., Clausen, T., Hui, J., Gnawali, O., & Ko, J. (2011). The trickle algorithm. RFC 6206 (Proposed Standard).
  26. 26.
    Ma, T., Xu, Z., Hempel, M., Peng, D., & Sharif, H. (2014). Performance analysis of a novel low-complexity high-precision timing synchronization method for wireless sensor networks. Wireless Communications, IEEE Transactions on, 13(9), 4758–4765. doi: 10.1109/TWC.2014.2331286.CrossRefGoogle Scholar
  27. 27.
    Marques, B. F., & Ricardo, M.P. (2011). Application-driven design to extend WSN lifetime. In Proceedings of 1st Portuguese national conference on sensor networks (CNRS2011), Coimbra, Portugal.Google Scholar
  28. 28.
    Marques, B. F., & Ricardo, M. P. (2014). Improving the energy efficiency of WSN by using application-layer topologies to constrain RPL-defined routing trees. In Ad Hoc networking workshop (MED-HOC-NET), 2014 13th annual Mediterranean (pp. 126–133). doi: 10.1109/MedHocNet..6849114.
  29. 29.
    Martin, J. (1965). Distribution of the time through a directed acyclic network. European Journal of Operations Research, 13, 44–66.MathSciNetGoogle Scholar
  30. 30.
    Mendes, L. D., & Rodrigues, J. J. (2011) A survey on cross-layer solutions for wireless sensor networks. Journal of Network and Computer Applications 34(2), 523–534. doi: 10.1016/j.jnca.2010.11.009. Efficient and Robust Security and Services of Wireless Mesh Networks.
  31. 31.
    Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (2007). RFC 4944—Transmission of IPv6 packets over IEEE 802.15.4 networks. In IETF RFC.Google Scholar
  32. 32.
    Nam, Y., Kwon, T., Lee, H., Jung, H., & Choi, Y. (2007). Guaranteeing the network lifetime in wireless sensor networks: A MAC layer approach. Computer Communications, 30(13), 2532–2545. doi: 10.1016/j.comcom.2007.05.031.CrossRefGoogle Scholar
  33. 33.
    Organization, Z. S. (2008). Zigbee specification. Document 053474r17.
  34. 34.
    Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-level sensor network simulation with COOJA. In Proceedings 2006 31st IEEE conference on local computer networks (pp. 641–648). doi: 10.1109/LCN.2006.322172.
  35. 35.
    Pantazis, N., Nikolidakis, S., & Vergados, D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. Communications Surveys Tutorials, IEEE, 15(2), 551–591. doi: 10.1109/SURV.2012.062612.00084.CrossRefGoogle Scholar
  36. 36.
    Paxson, V., Allman, M., Chu, H. J., & Sargent, M. (2011). Computing TCP’s retransmission timer.
  37. 37.
    RaspBerry Pi. (2014).
  38. 38.
    Santi, P. (2005). Topology control in wireless ad hoc and sensor networks. ACM Computing Surveys, 37(2), 164–194. doi: 10.1145/1089733.1089736.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sturek, D. (2009). ZigBee IP stack overview. ZigBee Alliance.Google Scholar
  40. 40.
    Tang, C. M., Zhang, Y., & Wu, Y. P. (2012). The P2P-RPL routing protocol research and implementation in contiki operating system. In 2012 Second international conference on instrumentation, measurement, computer, communication and control (IMCCC) (pp. 1472–1475). doi: 10.1109/IMCCC.2012.345.
  41. 41.
    van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient mac protocol for wireless sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems, SenSys ’03 (pp. 171–180). New York, NY: ACM. doi: 10.1145/958491.958512.
  42. 42.
    Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., et al. (2012) RPL: IPv6 routing protocol for low-power and lossy networks. In RFC 6550 (Proposed Standard).
  43. 43.
    Xie, W., Goyal, M., Hosseini, H., Martocci, J., Bashir, Y., Baccelli, E., et al. (2010) A performance analysis of point-to-point routing along a directed acyclic graph in low power and lossy networks. In 2010 13th International conference on Network-based information systems (NBiS) (pp. 111–116). doi: 10.1109/NBiS.2010.65.
  44. 44.
    Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In INFOCOM 2002. Proceedings of twenty-first annual joint conference of the IEEE computer and communications societies (Vol. 3, pp. 1567–1576), IEEE. doi: 10.1109/INFCOM.2002.1019408.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Departamento Engenharia Eletrotécnica, Escola Superior de Tecnologia e GestãoInstituto Superior Politécnico de ViseuViseuPortugal
  2. 2.INESC TEC, Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations