Advertisement

Wireless Networks

, Volume 23, Issue 2, pp 403–418 | Cite as

Survey of ICIC techniques in LTE networks under various mobile environment parameters

  • Mohamad Yassin
  • Mohamed A. AboulHassan
  • Samer Lahoud
  • Marc Ibrahim
  • Dany Mezher
  • Bernard Cousin
  • Essam A. Sourour
Article

Abstract

LTE networks’ main challenge is to efficiently use the available spectrum, and to provide satisfying quality of service for mobile users. However, using the same bandwidth among adjacent cells leads to occurrence of Inter-cell Interference especially at the cell-edge. Basic interference mitigation approaches consider bandwidth partitioning techniques between adjacent cells, such as frequency reuse of factor m schemes, to minimize cell-edge interference. Although SINR values are improved, such techniques lead to significant reduction in the maximum achievable data rate. Several improvements have been proposed to enhance the performance of frequency reuse schemes, where restrictions are made on resource blocks usage, power allocation, or both. Nevertheless, bandwidth partitioning methods still affect the maximum achievable throughput. In this proposal, we intend to perform a comprehensive survey on Inter-Cell Interference Coordination (ICIC) techniques, and we study their performance while putting into consideration various design parameters. This study is implemented throughout intensive system level simulations under several parameters such as different network loads, radio conditions, and user distributions. Simulation results show the advantages and the limitations of each technique compared to frequency reuse-1 model. Thus, we are able to identify the most suitable ICIC technique for each network scenario.

Keywords

Inter-cell interference coordination Mobile networks  LTE Frequency reuse-3 FFR SFR 

References

  1. 1.
    3GPP. (2006) Physical layer aspects for evolved universal terrestrial radio access (UTRA) (Release 7), 3GPP TR 25.814 V7.1.0, Technical report.Google Scholar
  2. 2.
    Park, E., & Pobil, A. P. D. (2013). Modeling the user acceptance of long-term evolution (LTE) services. Springer Annals of Telecommunications, 68(6), 307–315.CrossRefGoogle Scholar
  3. 3.
    Schulze, H., & Lueders, C. (2005). Theory and applications of OFDM and CDMA wideband wireless communications (1st ed., Vol. 1). Chichester: Wiley.CrossRefGoogle Scholar
  4. 4.
    Wang, J. S., Lee, J. H., Park, J. C., Song, I., & Kim, Y. H. (2010). Combining of cyclically delayed signals: A low-complexity scheme for PAPR reduction in OFDM systems. IEEE Transactions on Broadcasting, 56(4), 577–583.CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Yang, X., Ma, A., & Cuthbert, L. (2009). Intelligent resource optimisation using semi-smart antennas in LTE OFDMA systems. In 2009 IEEE international conference on communications technology and applications (pp. 173–179).Google Scholar
  6. 6.
    Xiao, D., Yu, X., & Yang, D. (2012). A novel downlink ICIC method based on user position in LTE-advanced systems. In 2012 IEEE vehicular technology conference (VTC Fall) (pp. 1–5).Google Scholar
  7. 7.
    Denes, J., & Keedwell, A. (1988). Frequency allocation for a mobile radio telephone system. IEEE Transactions on Communications, 36(6), 765–767.CrossRefGoogle Scholar
  8. 8.
    Donald, V. (1979). Advanced mobile phone service: The cellular concept. The Bell System Technical Journal, 58(1), 15–41.CrossRefGoogle Scholar
  9. 9.
    Javaudin, D. L. J. P., Laine, J., & Seller, O. (2005). On inter-cell interference in ofdma wireless systems. In Proceedings of the European signal processing conference.Google Scholar
  10. 10.
    Sesia, I. T. S., & Baker, M. (2009). LTE—The UMTS long term evolution from theory to practice (1st ed.). Chichester: Wiley.CrossRefGoogle Scholar
  11. 11.
    Ku, G., & Walsh, J. (2014). Resource allocation and link adaptation in LTE and LTE advanced. In A tutorial, IEEE communications surveys tutorials (Vol. PP, no. 99, pp. 1–1).Google Scholar
  12. 12.
    Daeinabi, A., Sandrasegaran, K., & Zhu, X. (2012). Survey of intercell interference mitigation techniques in LTE downlink networks. In 2012 Australasian telecommunication networks and applications conference (pp. 1–6).Google Scholar
  13. 13.
    Sternad, M., Ottosson, T., Ahlen, A., & Svensson, A. (2003). Attaining both Coverage and high spectral efficiency with adaptive OFDM downlinks. In IEEE 58th vehicular technology conference (vol. 4, pp. 2486–2490).Google Scholar
  14. 14.
    Huawei. (2005). Soft frequency reuse scheme for UTRANLTE (R1-050507), 3GPP RAN WG1 no. 41, Athens, Greece. Technical report.Google Scholar
  15. 15.
    Kosta, C., Hunt, B., Quddus, A.U., & Tafazolli, R. (2013). An improved inter-cell interference coordination (ICIC) for OFDMA multi-cell systems. In Proceedings of the 19th European wireless conference (pp. 1–5).Google Scholar
  16. 16.
    Dirani, M., & Altman, Z. (May 2010). A cooperative reinforcement learning approach for inter-cell interference coordination in OFDMA cellular networks. In Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Avignon (pp. 170–176).Google Scholar
  17. 17.
    Lee, D., Seo, H., Clerckx, B., Hardouin, E., Mazzarese, D., Nagata, S., et al. (2012). Coordinated multipoint transmission and reception in LTE-advanced: Deployment scenarios and operational challenges. IEEE Communications Magazine, 50(2), 148–155.CrossRefGoogle Scholar
  18. 18.
    Das, S., Viswanathan, H., & Rittenhouse, G. (2003). Dynamic load balancing through coordinated scheduling in packet data systems. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE societies (vol. 1, pp. 786–796).Google Scholar
  19. 19.
    Saquib, N., Hossain, E., Le, L. B., & Kim, D. I. (2012). Interference management in OFDMA femtocell networks: Issues and approaches. IEEE Wireless Communications, 19(3), 86–95.CrossRefGoogle Scholar
  20. 20.
    Xu, S., Han, J., & Chen, T. (2012). Enhanced inter-cell interference coordination in heterogeneous networks for LTE-advanced, in IEEE 75th vehicular technology conference (pp. 1–5). Yokohama: VTC Spring.Google Scholar
  21. 21.
    Fodor, G., Koutsimanis, C., Rácz, A., Reider, N., Simonsson, A., & Müller, W. (2009). Intercell interference coordination in OFDMA networks and in the 3GPP long term evolution system. Journal of Communications, 4, 445–453.CrossRefGoogle Scholar
  22. 22.
    Hamza, A., Khalifa, S., Hamza, H., & Elsayed, K. (2013). A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks. IEEE Communications Surveys Tutorials, 15(4), 1642–1670.CrossRefGoogle Scholar
  23. 23.
    Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communications Surveys Tutorials, 16(4), 2142–2180.CrossRefGoogle Scholar
  24. 24.
    VUT. (2014). LTE downlink system level simulator, Vienna University of Technology. Vienna University of Technology. http://www.nt.tuwien.ac.at
  25. 25.
    Ikuno, J., Wrulich, M., & Rupp, M. (2010). System level simulation of LTE networks, in IEEE 71st vehicular technology conference (pp. 1–5). Taipei.Google Scholar
  26. 26.
    De Pasquale, A., Magnani, N., & Zanini, P. (1998). Optimizing frequency planning in the GSM system, in IEEE 1998 international conference on universal personal communications (vol. 1, pp. 293–297). Florence.Google Scholar
  27. 27.
    Priscoli, F. Delli, Magnani, N., Palestini, V., & Sestini, F. (1997). Application of dynamic channel allocation strategies to the GSM cellular network. IEEE Journal on Selected Areas in Communications, 15(8), 1558–1567.CrossRefGoogle Scholar
  28. 28.
    Engstrom, S., Johansson, T., Kronestedt, F., Larsson, M., Lidbrink, S., & Olofsson, H. (May 1998). Multiple reuse patterns for frequency planning in GSM networks. In IEEE 48th vehicular technology conference (vol. 3, pp. 2004–2008). Ottawa.Google Scholar
  29. 29.
    Frank, P., Muller, A., Droste, H., & Speidel, J. 2010). Cooperative interference-aware joint scheduling for the 3GPP LTE uplink. In IEEE 21st International Symposium on Personal Indoor and Mobile radio Communications (pp. 2216–2221). Istanbul.Google Scholar
  30. 30.
    Hassan, N., & Assaad, M. (2009). Optimal fractional frequency reuse (FFR) and resource allocation in multiuser OFDMA system. In 2009 international conference on information and communication technologies (pp. 88–92). Karachi.Google Scholar
  31. 31.
    Qin, Z., Zhong, Z., Xu, R., & Bai, G. (2012). System performance of soft frequency reuse in LTE railway networks. In IEEE 11th international conference on signal processing, (vol. 2, pp. 1566–1570). Beijing.Google Scholar
  32. 32.
    Jiming, C., Peng, W., & Jie, Z. (2013). Adaptive soft frequency reuse scheme for in-building dense femtocell networks. China Communications, 10(1), 44–55.CrossRefGoogle Scholar
  33. 33.
    Raafat, M. Y. W., & Tarrad, I. (2013). Comprehensive survey on various ICIC schemes and proposed 3G RF interference mitigation techniques for OFDM downlink on cellular networks. Journal of Engineering and Architecture, 1(2), 35.Google Scholar
  34. 34.
    Kosta, C., Hunt, B., Quddus, A., & Tafazolli, R. (2013). On interference avoidance through inter-cell interference coordination (ICIC) based on OFDMA mobile systems. IEEE Communications Surveys Tutorials, 15(3), 973–995.CrossRefGoogle Scholar
  35. 35.
    Assaad, M. (2008). Optimal Fractional frequency reuse (FFR) in multicellular OFDMA system. In IEEE 68th vehicular technology conference (pp. 1–5). Calgary.Google Scholar
  36. 36.
    Yassin, M., Lahoud, S., Ibrahim, M., & Khawam, K.(2014). A downlink power control Heuristic algorithm for LTE networks. In 21st international conference on telecommunications (pp. 323–327). Lisbon.Google Scholar
  37. 37.
    Aboul Hassan, M., Sourour, E., & Shaaban, S. (May 2014). Novel Resource Allocation Algorithm for Improving Reuse One Scheme Performance in LTE Networks. In 21st international conference on telecommunications (pp. 166–170). Lisbon.Google Scholar
  38. 38.
    Niyato, D., & Hossain, E. (June 2006). A cooperative game framework for bandwidth allocation in 4G heterogeneous wireless networks. In 2006 IEEE international conference on communications (vol. 9, pp. 4357–4362).Google Scholar
  39. 39.
    Zheng, J., Cai, Y., & Anpalagan, A. (2015). A stochastic game-theoretic approach for interference mitigation in small cell networks. IEEE Communications Letters, 19(2), 251–254.CrossRefGoogle Scholar
  40. 40.
    Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: A downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9(4), 1414–1425.CrossRefGoogle Scholar
  41. 41.
    Necker, M. (2009). Scheduling constraints and interference graph properties for graph-based interference coordination in cellular OFDMA networks. Springer Journal of Mobile Networks and Applications, 14(4), 539–550.CrossRefGoogle Scholar
  42. 42.
    Chang, R., Tao, Z., Zhang, J., & Kuo, C.-C. (2009). Multicell OFDMA downlink resource allocation using a graphic framework. IEEE Transactions on Vehicular Technology, 58(7), 3494–3507.CrossRefGoogle Scholar
  43. 43.
    Krasniqi, B., Wrulich, M., & Mecklenbrauker, C. (2009). Network-load dependent partial frequency reuse for LTE. In 9th iIternational Symposium on Communications and Information Technology (pp. 672–676). Icheon.Google Scholar
  44. 44.
    Yassin, M., Lahoud, S., Ibrahim, M., Khawam, K., Mezher, D., & Cousin, B. (2015). Non-cooperative inter-cell interference coordination technique for increasing through fairness in LTE networks. In IEEE 81st vehicular technology conference, Glasgow.Google Scholar
  45. 45.
    3GPP. (2013). Evolved universal terrestrial radio access (E-UTRA): Physical layer procedures, 3GPP TS 36.213 V11.11.0, Technical specification.Google Scholar
  46. 46.
    Hossain, E., Rasti, M., Tabassum, H., & Abdelnasser, A. (2014). Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Communications, 21(3), 118–127.CrossRefGoogle Scholar
  47. 47.
    Shamsan, Z. A., Rahman, T. A., & AlHetar, A. M. (2012). Interference coordination for LTE-advanced and FM broadcasting interoperability. Springer Annals of Telecommunications, 67(10), 477–483.CrossRefGoogle Scholar
  48. 48.
    Sawahashi, M., Kishiyama, Y., Morimoto, A., Nishikawa, D., & Tanno, M. (2010). Coordinated multipoint transmission/reception techniques for LTE-advanced [coordinated and distributed MIMO]. IEEE Wireless Communications, 17(3), 26–34.CrossRefGoogle Scholar
  49. 49.
    Tran, Y. S. T., & Shin, O. (2012). Overview of enabling technologies for 3GPP LTE-advanced. EURASIP Journal of Wireless Communications and Networking, 2012(2), 1–12.Google Scholar
  50. 50.
    Saquib, N., Hossain, E., & Kim, D. I. (2013). Fractional frequency reuse for interference management in LTE-advanced HetNets. IEEE Wireless Communications, 20(2), 113–122.CrossRefGoogle Scholar
  51. 51.
    Dahrouj, H., & Yu, W. (2010). Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Transactions on Wireless Communications, 9(5), 1748–1759.CrossRefGoogle Scholar
  52. 52.
    Deb, S., Monogioudis, P., Miernik, J., & Seymour, J. (2014). Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets. IEEE/ACM Transactions on Networking, 22(1), 137–150.CrossRefGoogle Scholar
  53. 53.
    Zia, N., Mwanje, S., & Mitschele-Thiel, A. (June 2014). A policy based conflict resolution mechanism for MLB and MRO in LTE self-optimizing networks. In 2014 IEEE Symposium on Computers and Communication (pp. 1–6). Funchal.Google Scholar
  54. 54.
    3GPP. (2006). Radio frequency (RF) system scenarios, 3GPP TR 36.931 release 9.Technical report.Google Scholar
  55. 55.
    3GPP. (2006). Radio frequency (RF) system scenarios, 3GPP TR 36.922. Technical report.Google Scholar
  56. 56.
    Ramli, H., Basukala, R., Sandrasegaran, K., & Patachaianand, R. (2009). Performance of well known packet scheduling algorithms in the downlink 3GPP LTE system. In IEEE 9th Malaysia international conference on communications (pp. 815–820). Kuala Lumpur.Google Scholar
  57. 57.
    3GPP. (2010). Evolved universal terrestrial radio access (E-UTRA): Further advancements for E-UTRA physical layer aspects (release 9), 3GPP TR 36.814 V9.0.0. Technical report.Google Scholar
  58. 58.
    Kawser, M. T., Hamid, N. I. B., Hasan, M. N., Alam, M. S., & Rahman, M. M. (2012). Downlink SNR to CQI mapping for different multiple antenna techniques in LTE. International Journal of Information and Electronics Engineering, 2(5), 756–760.Google Scholar
  59. 59.
    Fujitsu Network Communications Inc. (2011). Enhancing LTE cell-edge performance via PDCCH ICIC. White paper Fujitsu.Google Scholar
  60. 60.
    Sarkiss, M., & Kamoun, M. (2014). On the energy efficiency of base station cooperation under limited backhaul capacity. Springer Annals of Telecommunications, 69(10), 539–551.CrossRefGoogle Scholar
  61. 61.
    Jain, R. K., Chiu, D. W., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation and shared computer system. Digital equipment corporation. Technical report.Google Scholar
  62. 62.
    Yassin, M., Dirani, Y., Ibrahim, M., Lahoud, S., Mezher, D., & Cousin, B. (2015). A novel dynamic inter-cell interference coordination technique for LTE networks. In IEEE  \(26^{th}\) Annual International Symposium Personal, Indoor, and Mobile Radio Communications, Hong Kong.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mohamad Yassin
    • 1
    • 2
  • Mohamed A. AboulHassan
    • 3
  • Samer Lahoud
    • 1
  • Marc Ibrahim
    • 2
  • Dany Mezher
    • 2
  • Bernard Cousin
    • 1
  • Essam A. Sourour
    • 4
  1. 1.University of Rennes 1RennesFrance
  2. 2.Saint Joseph University of BeirutBeirutLebanon
  3. 3.Pharos UniversityAlexandriaEgypt
  4. 4.Prince Sattam Bin Abdul-Aziz UniversityAl-KharjSaudi Arabia

Personalised recommendations