Wireless Networks

, Volume 23, Issue 1, pp 159–176 | Cite as

Performance evaluation of softer vertical handovers in multiuser heterogeneous wireless networks

  • Alessandro Bazzi
  • Barbara M. Masini
  • Alberto Zanella
  • Davide Dardari


In the future fifth generation (5G) networked society, devices will integrate heterogeneous radio access technologies (RATs) to improve the network performance and the user quality of experience. In this paper, we focus on softer vertical handover (SRVH), discussing its feasibility and its performance in a multiuser scenario. Specifically, a new taxonomy for vertical handovers is proposed to resolve ambiguities in current terminology and technical issues related to SRVH implementation are discussed. Then, a simple but accurate analytical model is proposed to evaluate the performance of SRVH and results are provided with reference to best effort services in the presence of two RATs. Two case studies are considered, a mobile controlled approach with uncoordinated RATs and a network controlled approach with coordination among RATs. Results demonstrate that SRVHs are useful to allow finer granularity in resource allocation when there is coordination among RATs, although they fail to provide throughput improvements if they are selfishly performed by mobile terminals.


Heterogeneous networks Radio access technologies Vertical handovers Parallel transmission Bandwidth aggregation in multiple RATs 


  1. 1.
    3GPP: RAN S1.14, UTRA FDD; physical layer procedures.Google Scholar
  2. 2.
    3GPP: TR 36.942, evolved universal terrestrial radio access (E-UTRA); radio frequency (RF) system scenarios.Google Scholar
  3. 3.
    3GPP: TS 24.312, access network discovery and selection function (ANDSF) management object (MO).Google Scholar
  4. 4.
    3GPP: TS 25.308, technical specification group radio access network; UTRA FDD; high speed downlink packet access (HSDPA); overall description.Google Scholar
  5. 5.
    3GPP: TS 25.331, technical specification group radio access network; radio resource control (RRC); protocol specification.Google Scholar
  6. 6.
    Akyildiz, I. F., Gutierrez-Estevez, D. M., & Reyes, E. C. (2010). The evolution to 4G cellular systems: LTE-advanced. Physical Communication, 3(4), 217–244. doi: 10.1016/j.phycom.2010.08.001.CrossRefGoogle Scholar
  7. 7.
    Bamis, A., Boukerche, A., Chatzigiannakis, I., & Nikoletseas, S. (2008). A mobility aware protocol synthesis for efficient routing in ad hoc mobile networks. Computer Networks, 52(1), 130–154. doi: 10.1016/j.comnet.2007.09.023.CrossRefzbMATHGoogle Scholar
  8. 8.
    Bazzi, A. (2010). A softer vertical handover algorithm for heterogeneous wireless access networks. In Personal indoor and mobile radio communications (PIMRC), 2010 IEEE 21st international symposium on (pp. 2156–2161). doi: 10.1109/PIMRC.2010.5671666.
  9. 9.
    Bazzi, A. (2011). On uncoordinated multi user multi RAT combining. In Vehicular technology conference (VTC Fall), 2011 IEEE (pp. 1–6). doi: 10.1109/VETECF.2011.6093056.
  10. 10.
    Bazzi, A., Pasolini, G., & Andrisano, O. (2008). Multiradio resource management: Parallel transmission for higher throughput? EURASIP Journal on Advances in Signal Processing. doi: 10.1155/2008/763264.Google Scholar
  11. 11.
    Ben Ali, R., & Pierre, S. (2009). On the impact of soft vertical handoff on optimal voice admission control in PCF-based WLANs loosely coupled to 3G networks. IEEE Transactions on Wireless Communications, 8, 1356–1365.CrossRefGoogle Scholar
  12. 12.
    Boukerche, A. (2005). Handbook of algorithms for wireless networking and mobile computing. Boca Raton: CRC Press.CrossRefGoogle Scholar
  13. 13.
    Bruno, R., Conti, M., & Gregori, E. (2008). An accurate closed-form formula for the throughput of long-lived TCP connections in IEEE 802.11 WLANs. Computer Networks, 52(1), 199–212. doi: 10.1016/j.comnet.2007.09.017.CrossRefzbMATHGoogle Scholar
  14. 14.
    Buddhikot, M., Chandranmenon, G., Han, S., Lee, Y., Miller, S., & Salgarelli, L. (2003). Integration of 802.11 and third-generation wireless data networks. In INFOCOM 2003. twenty-second annual joint conference of the IEEE computer and communications. IEEE societies (Vol. 1, pp. 503–512). doi: 10.1109/INFCOM.2003.1208701.
  15. 15.
    Charles, J. P., Furuskar, A., Frodigh, M., Jeux, S., Saadani, A., Hassan, M., et al. (2015). Refined statistical analysis of evolution approaches for wireless networks. IEEE Transactions on Wireless Communications, 14(5), 2700–2710. doi: 10.1109/TWC.2015.2391097.CrossRefGoogle Scholar
  16. 16.
    Chebrolu, K., & Rao, R. (2006). Bandwidth aggregation for real-time applications in heterogeneous wireless networks. IEEE Transactions on Mobile Computing, 5(4), 388–403. doi: 10.1109/TMC.2006.1599407.CrossRefGoogle Scholar
  17. 17.
    Dimou, K., Agero, R., Bortnik, M., Karimi, R., Koudouridis, G., Kaminski, S., et al. (2005). Generic link layer: A solution for multi-radio transmission diversity in communication networks beyond 3G. In Vehicular technology conference, 2005. VTC-2005-fall. 2005 IEEE 62nd (Vol. 3, pp. 1672–1676). doi: 10.1109/VETECF.2005.1558226.
  18. 18.
    Ford, A., Raiciu, C., Handley, M., Barré, S., & Iyengar, J. (2011). Architectural guidelines for multipath TCP development. IETF RFC 6182.Google Scholar
  19. 19.
    Holma, H., & Toskala, A. (2007). HSDPA/HSUPA for UMTS. Hoboken: Wiley.Google Scholar
  20. 20.
    Holma, H., & Toskala, A. (2007). WCDMA for UMTS. Hoboken: Wiley.CrossRefGoogle Scholar
  21. 21.
    Hsieh, H. Y., & Sivakumar, R. (2005). A transport layer approach for achieving aggregate bandwidths on multi-homed mobile hosts. Wireless Networks, 11, 99–114.CrossRefGoogle Scholar
  22. 22.
    Huang, H., & Cai, J. (2006). Adding network-layer intelligence to mobile receivers for solving spurious TCP timeout during vertical handoff. IEEE Network, 20, 24–31.CrossRefGoogle Scholar
  23. 23.
    IEEE Std 802.21-2008: IEEE standard for local and metropolitan area networks- part 21: Media independent handover (2009). doi: 10.1109/IEEESTD.2009.4769367.
  24. 24.
    IEEE Std 802.11e-2005: Supplement to part 11: Wireless medium access control (MAC) and physical layer (PHY) specifications: Medium access control (MAC) enhancements for quality of service (QoS) (2005).Google Scholar
  25. 25.
    Iyengar, J., Amer, P., & Stewart, R. (2006). Concurrent multipath transfer using SCTP multihoming over independent end-to-end paths. IEEE/ACM Transactions on Networking, 14(5), 951–964. doi: 10.1109/TNET.2006.882843.CrossRefGoogle Scholar
  26. 26.
    Jain, R., Chiu, D. M., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Tech. rep., Digital Equipment Corp.Google Scholar
  27. 27.
    Khan, M., Toker, A., Sivrikaya, F., & Albayrak, S. (2011). Cooperation-based resource allocation and call admission for wireless network operators. Telecommunication Systems (pp. 1–13). doi: 10.1007/s11235-010-9412-1.
  28. 28.
    Luo, J., Mukerjee, R., Dillinger, M., Mohyeldin, E., & Schulz, E. (2003). Investigation of radio resource scheduling in WLANs coupled with 3G cellular network. IEEE Communications Magazine, 41(6), 108–115.CrossRefGoogle Scholar
  29. 29.
    McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., et al. (2008). Openflow: Enabling innovation in campus networks. SIGCOMM Computer Communication Review, 38(2), 69–74. doi: 10.1145/1355734.1355746.CrossRefGoogle Scholar
  30. 30.
    Naoe, H., Wetterwald, M., & Bonnet, C. (2007). IPv6 soft handover applied to network mobility over heterogeneous access networks. In IEEE 8th international symposium on personal, indoor and mobile radio communications, 2007. (PIMRC 2007), Athens, Greece (pp. 1–5). IEEE.Google Scholar
  31. 31.
    Nguyen, S. C., Zhang, X., Nguyen, T. M. T., & Pujolle, G. (2011). Evaluation of throughput optimization and load sharing of multipath TCP in heterogeneous networks. In Wireless and optical communications networks (WOCN), 2011 eighth international conference on (pp. 1–5). doi: 10.1109/WOCN.2011.5872966.
  32. 32.
    Nielsen, J. J., Madsen, T. K., & Schwefel, H. P. (2011). Location assisted handover optimization for heterogeneous wireless networks. In Wireless conference 2011—Sustainable wireless technologies (European Wireless), 11th European (pp. 1–8).Google Scholar
  33. 33.
    Niyato, D., & Hossain, E. (2006). A cooperative game framework for bandwidth allocation in 4G heterogeneous wireless networks. In Communications. ICC’06. IEEE international conference on (Vol. 9, pp. 4357–4362). doi: 10.1109/ICC.2006.255766.
  34. 34.
    Niyato, D., & Hossain, E. (2008). A noncooperative game-theoretic framework for radio resource management in 4G heterogeneous wireless access networks. IEEE Transactions on Mobile Computing, 7(3), 332–345. doi: 10.1109/TMC.2007.70727.CrossRefGoogle Scholar
  35. 35.
    Pazzi, R. W., Zhang, Z., & Boukerche, A. (2010). Design and evaluation of a novel MAC layer handoff protocol for IEEE 802.11 wireless networks. Journal of Systems and Software, 83(8), 1364–1372. doi: 10.1016/j.jss.2010.02.041. Performance Evaluation and Optimization of Ubiquitous Computing and Networked Systems.
  36. 36.
    Ramaboli, A. L., Falowo, O. E., & Chan, A. H. (2012). Bandwidth aggregation in heterogeneous wireless networks: A survey of current approaches and issues. Journal of Network and Computer Applications, 35(6), 1674–1690. doi: 10.1016/j.jnca.2012.05.015.CrossRefGoogle Scholar
  37. 37.
    Rutagemwa, H., Pack, S., Shen, X., & Mark, J. (2007). Robust cross-layer design of wireless-profiled TCP mobile receiver for vertical handover. IEEE Transactions on Vehicular Technology, 56, 3899–3911.CrossRefGoogle Scholar
  38. 38.
    She, J., Mei, J., Ho, J., Ho, P. H., & Ji, H. (2010). Layered adaptive modulation and coding for 4G wireless networks. In Global telecommunications conference (GLOBECOM 2010), 2010 IEEE (pp. 1–6). doi: 10.1109/GLOCOM.2010.5683680.
  39. 39.
    Shu, T., Liu, M., Li, Z., & Zheng, K. (2009). Network-layer soft vertical handoff schemes without packet reordering. In Local computer networks. LCN 2009. IEEE 34th conference on (pp. 285–288). doi: 10.1109/LCN.2009.5355089.
  40. 40.
    Sivakumar, H., Bailey, S., & Grossman, R. L. (2000). PSockets: The case for application-level network striping for data intensive applications using high speed wide area networks. In Proceedings of the 2000 ACM/IEEE conference on supercomputing (CDROM), Supercomputing’00. IEEE computer society, Washington, DC, USA.
  41. 41.
    Stemm, M., & Katz, R. (1998). Vertical handoffs in wireless overlay networks. ACM Mobile Networks and Applications (MONET), 3, 335–350.CrossRefGoogle Scholar
  42. 42.
    Stewart, R. R., & Xie, Q. (2001). Stream control transmission protocol (SCTP). Addison-Wesley Professional.
  43. 43.
    Tan, P., Wu, Y., & Sun, S. (2008). Link adaptation based on adaptive modulation and coding for multiple-antenna OFDM system. IEEE Journal on Selected Areas in Communications, 26(8), 1599–1606. doi: 10.1109/JSAC.2008.081025.CrossRefGoogle Scholar
  44. 44.
    Taniuchi, K., Ohba, Y., Fajardo, V., Das, S., Tauil, M., Cheng, Y. H., et al. (2009). IEEE 802.21: Media independent handover: Features, applicability, and realization. IEEE Communications Magazine, 47(1), 112–120. doi: 10.1109/MCOM.2009.4752687.
  45. 45.
    Vegni, A. M., & Natalizio, E. (2014). A hybrid (n/m)cho soft/hard vertical handover technique for heterogeneous wireless networks. Ad Hoc Networks, 14, 51–70. doi: 10.1016/j.adhoc.2013.11.005.CrossRefGoogle Scholar
  46. 46.
    Veronesi, R. (2005). Multiuser scheduling with multi radio access selection. In Wireless communication systems, 2005. 2nd international symposium on (pp. 455–459). doi: 10.1109/ISWCS.2005.1547742.
  47. 47.
    Wang, N. C., Wang, Y. Y., & Chang, S. C. (2007). A fast adaptive congestion control scheme for improving TCP performance during soft vertical handoff. In IEEE wireless communications and networking conference, 2007. (WCNC 2007) (pp. 3641–3646). IEEE, Hong Kong.Google Scholar
  48. 48.
    Yang, K., Gondal, I., & Qiu, B. (2008). Context aware vertical soft handoff algorithm for heterogeneous wireless networks. In IEEE 68th vehicular technology conference, 2008. (VTC 2008-Fall), Calgary, Canada (pp. 1–5). IEEE.Google Scholar
  49. 49.
    Yap, K. K., Kobayashi, M., Sherwood, R., Huang, T. Y., Chan, M., Handigol, N., et al. (2010). Openroads: Empowering research in mobile networks. SIGCOMM Computer Communication Review, 40(1), 125–126. doi: 10.1145/1672308.1672331.CrossRefGoogle Scholar
  50. 50.
    Yoo, J. W., & Park, K. H. (2011). A cooperative clustering protocol for energy saving of mobile devices with wlan and bluetooth interfaces. IEEE Transactions on Mobile Computing, 10(4), 491–504. doi: 10.1109/TMC.2010.161.CrossRefGoogle Scholar
  51. 51.
    Yu, B., Yang, L., Ishii, H., & Mukherjee, S. (2015). Dynamic TDD support in macrocell-assisted small cell architecture. IEEE Journal on Selected Areas in Communications, 33(6), 1201–1213. doi: 10.1109/JSAC.2015.2417013.CrossRefGoogle Scholar
  52. 52.
    Zabini, F., Bazzi, A., & Masini, B. (2013). Throughput versus fairness tradeoff analysis. In Communications (ICC), 2013 IEEE international conference on (pp. 5131–5136). doi: 10.1109/ICC.2013.6655397.
  53. 53.
    Zhang, Z., Pazzi, R., & Boukerche, A. (2010). A fast MAC layer handoff protocol for WiFi-based wireless networks. In Local computer networks (LCN), 2010 IEEE 35th conference on (pp. 684–690). doi: 10.1109/LCN.2010.5735794.
  54. 54.
    Zhang, Z., Pazzi, R., Boukerche, A., & Landfeldt, B. (2010). Reducing handoff latency for WiMAX networks using mobility patterns. In Wireless communications and networking conference (WCNC), 2010 IEEE (pp. 1–6). doi: 10.1109/WCNC.2010.5506386.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.IEIIT/CNRBolognaItaly
  2. 2.University of BolognaBolognaItaly

Personalised recommendations