Advertisement

Wireless Networks

, Volume 23, Issue 1, pp 89–101 | Cite as

Load-aware channel hopping protocol design for mobile ad hoc networks

  • Chih-Min Chao
  • Hsien-Chen Tsai
  • Chao-Ying Huang
Article
  • 229 Downloads

Abstract

Using multiple channels in wireless networks improves spatial reuse and reduces collision probability and thus enhances network throughput. Designing a multi-channel MAC protocol is challenging because multi-channel-specific issues such as channel assignment, the multi-channel hidden terminal problem, and the missing receiver problem, must be solved. Most existing multi-channel MAC protocols suffer from either higher hardware cost or poor throughput. Some channel hopping multi-channel protocols achieve pretty good performance in certain situations but fail to adjust their channel hopping mechanisms according to varied traffic loads. In this paper, we propose a load-aware channel hopping MAC protocol (LACH) that solves all the multi-channel-specific problems mentioned above. LACH enables nodes to dynamically adjust their schedules based on their traffic loads. In addition to load awareness, LACH has several other attractive features: (1) Each node is equipped with a single half-duplex transceiver. (2) Each node’s initial hopping sequence is generated by its ID. Knowing the neighbor nodes’ IDs, a node can calculate its neighbors’ initial channel hopping sequences without control packet exchanges. (3) Nodes can be evenly distributed among available channels. Through performance analysis, simulations, and real system implementation, we verify that LACH is a promising protocol suitable for a network with time-varied traffic loads.

Keywords

Ad hoc networks Multichannel MAC protocols Quorum systems 

Notes

Acknowledgments

This research was sponsored by Ministry of Science and Technology, R. O. C., under grant NSC 102-2221-E-019-017-MY3.

References

  1. 1.
    Almotairi, K. H., & Shen, X. (2013). Multichannel medium access control for ad hoc wireless networks. Wireless Communications and Mobile Computing. 13(11),  1047–1059.Google Scholar
  2. 2.
    Hongjiang, L., Zhi, R., Chao, G., & Yongcai, G. (2012). A new multi-channel MAC protocol for 802.11-based wireless mesh networks. In IEEE ICCSEE (pp. 27–31).Google Scholar
  3. 3.
    Seo, M., Kim, Y., & Ma, J. (2008). Multi-channel MAC protocol for multi-hop wireless networks: Handling multi-channel hidden node problem using snooping. In Proceedings of IEEE MILCOM.Google Scholar
  4. 4.
    Wang, J., Fang, Y., & Wu, D. (2006). A power-saving multi-radio multi-channel MAC protocol for wireless local area networks. In Proceedings of IEEE INFOCOM (pp. 1–12).Google Scholar
  5. 5.
    Wu, S.-L., Tseng, Y.-C., Lin, C.-Y., & Sheu, J.-P. (2000). A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks. In Proceedings of IEEE ISPAN (pp. 232–237).Google Scholar
  6. 6.
    Almotairi, K. H., & Shen, X. (2011). Fast and slow hopping MAC protocol for single-hop ad hoc wireless networks. In IEEE ICC (pp. 1–5).Google Scholar
  7. 7.
    Kim, J.-H., & Yoo, S.-J. (2009). TMCMP: TDMA based multi-channel MAC protocol for improving channel efficiency in wireless ad hoc networks. In Proceedings of IEEE MICC (pp. 429–434).Google Scholar
  8. 8.
    Li, C.-Y., Jeng, A.-K., & Jan, R.-H. (2004). A MAC protocol for multi-channel multi-interface wireless mesh network using hybrid channel assignment scheme. Journal of Information Science and Engineering, 23, 1041–1055.Google Scholar
  9. 9.
    Pathmasuntharam, J. S., Das, A., & Gupta, A. K. (2004). Primary channel assignment based MAC (PCAM)—A multi-channel MAC protocol for multi-hop wireless networks. In Proceedings of IEEE WCNC (pp. 1110–1115).Google Scholar
  10. 10.
    Zhang, Z., Boukerche, A., & Ramadan, H. (2013). Design and evaluation of a fast MAC layer handoff management scheme for WiFi-based multichannel vehicular mesh networks. Journal of Network and Computer Applications, 36(3), 992–1000.CrossRefGoogle Scholar
  11. 11.
    Khaled, H. A., & Xuemin, S. (2015). A distributed multi-channel MAC protocol for ad hoc wireless networks. IEEE Transactions on Mobile Computing, 14(1), 1–13.CrossRefGoogle Scholar
  12. 12.
    Lin, T.-Y., Kun-Ru, W., & Yin, G.-C. (2015). Channel-hopping scheme and channel-diverse routing in static multi-radio multi-hop wireless networks. IEEE Transactions on Computers, 64(1), 71–86.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Incel, O. D., van Hoesel, L., Jansen, P., & Havinga, P. (2011). MC-LMAC: A multi-channel MAC protocol for wireless sensor networks. Ad Hoc Networks, 9, 73–94.CrossRefGoogle Scholar
  14. 14.
    Ivanov, S., Botvich, D., & Balasubramaniam, S. (2012). Cooperative wireless sensor environments supporting body area networks. IEEE Transactions on Consumer Electronics, 58(2), 284–292.CrossRefGoogle Scholar
  15. 15.
    Liao, W.-H., & Chung, W.-C. (2009). An efficient multi-channel MAC protocol for mobile ad hoc networks. In Proceedings of IEEE CMC (pp. 162–166).Google Scholar
  16. 16.
    Lin, C.-S., Wueng, M.-C., Chiu, T.-H., & Hwang, S.-I. (2007). Concurrent multi-channel transmission (CMCT) MAC protocol in wireless mobile ad hoc networks. In Proceedings of ICACT (pp. 445–449).Google Scholar
  17. 17.
    Luo, T., Motani, M., & Srinivasan, V. (2009). Cooperative asynchronous multichannel MAC design, analysis, and implementation. IEEE Transaction on Mobile Computing, 8(3), 338–352.Google Scholar
  18. 18.
    Shi, J., Salonidis, T., & Knightly, E. W. (2006). Starvation mitigation through multi-channel coordination. In Proceedings of ACM MobiHoc (pp. 214–225).Google Scholar
  19. 19.
    So, J., & Vaidya, N. (2004). Multi-channel MAC for ad hoc networks: Handling multi-channel hidden terminals using a single transceiver. In Proceedings of ACM MobiHoc (pp. 222–233).Google Scholar
  20. 20.
    Dang, D. N. M., Le, H. T., Kang, H. S., Hong, C. S., & Choe, J. (2015). Multi-channel MAC protocol with directional antennas in wireless ad hoc networks. In International conference on information networking (ICOIN) (pp. 81–86). IEEE.Google Scholar
  21. 21.
    Dang, D. N. M., Hong, C. S., & Lee, S. (2015). A hybrid multi-channel MAC protocol for wireless ad hoc networks. Wireless Networks, 21(2), 387–404.CrossRefGoogle Scholar
  22. 22.
    Bahl, P., Chandra, R., & Dunagan, J. (2004). SSCH: Slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks. In Proceedings of ACM MobiCom (pp. 216–230).Google Scholar
  23. 23.
    Bian, K., Park, J.-M., & Chen, R. (2009) A quorum-based framework for establishing control channels in dynamic spectrum access networks. In Proceedings of ACM MobiCom.Google Scholar
  24. 24.
    So, H.-S. W., Walrand, J., & Mo, J. (2007). McMAC: A prarllel rendezvous multi-channel MAC protocol. In Proceedings of IEEE WCNC (pp. 334–339).Google Scholar
  25. 25.
    Chao, C.-M., Tsai, H.-C., & Huang, K.-J. (2014). A new channel hopping MAC protocol for mobile ad hoc networks. IEEE Transactions on Vehicular Technology, 63(9), 4464–4475.CrossRefGoogle Scholar
  26. 26.
    Tang, L., Sun, Y., Gurewitz, O., & Johnson, D. B. (2011). EM-MAC: A dynamic multichannel energy-efficient MAC protocol for wireless sensor networks. In ACM MobiHoc.Google Scholar
  27. 27.
    Chao, C.-M., Tsai, H.-C., & Huang, C.-Y. (2012). Load-aware channel hopping protocol design for mobile ad hoc networks. In IEEE ISWPC (pp. 1–6).Google Scholar
  28. 28.
    Bao, L. (2004). MALS: Multiple access scheduling based on latin squares. In Proceedings of IEEE MILCOM (pp. 315–321).Google Scholar
  29. 29.
    Ju, J.-H., Victor, O., & Li, K. (1999). TDMA scheduling design of multihop packet radio networks based on latin squares. IEEE Journal on Selected Areas in Communications, 17, 1345–1352.CrossRefGoogle Scholar
  30. 30.
    Park, M., & Kim, S.-L. (2008). Minimum distortion network code design for source coding over noisy channels. In Proceedings of IEEE PIMRC (pp. 1–5).Google Scholar
  31. 31.
    Oh, H.-Y., Kim, D.-S., Kim, J.-S. & Song, H.-Y. (2007). Collision-free Interleavers using Latin squares for parallel decoding of turbo codes. In Proceedings of IEEE VTC (pp. 1589–1592).Google Scholar
  32. 32.
    Sheu, J.-P., Chao, C.-M., Hu, W.-K., & Sun, C.-W. (2007). A clock synchronization algorithm for multihop wireless ad hoc networks. Wireless Personal Communications, 43(2), 185–200.Google Scholar
  33. 33.
    So, H.-S. W., Nguyen, G., & Walrand, J. (2006). Practical synchronization techniques for multi-channel MAC. In Proceedings of ACM MobiCom.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chih-Min Chao
    • 1
  • Hsien-Chen Tsai
    • 1
  • Chao-Ying Huang
    • 1
  1. 1.Department of Computer Science and EngineeringNational Taiwan Ocean UniversityKeelungTaiwan

Personalised recommendations