Advertisement

Wireless Networks

, Volume 22, Issue 8, pp 2537–2550 | Cite as

An analytical geometric range free localization scheme based on mobile beacon points in wireless sensor network

  • Munesh SinghEmail author
  • Pabitra Mohan Khilar
Article

Abstract

In many applications of wireless sensor network, the position of the sensor node is useful to identify the actuating response of the environment. The main idea of the proposed localization scheme is similar with most of the existing localization schemes, where a mobile beacon with global positioning system broadcast its current location coordinate periodically. The received information of the coordinates help other unknown nodes to localize themselves. In this paper, we proposed a localization scheme using mobile beacon points based on analytical geometry. Sensor node initially choose two distant beacon points, in-order to minimize its residence area. Later using the residence area, sensor node approximate the radius and half length of the chord with reference to one of the distant beacon point. Then the radius and half length of the chord are used to estimate the sagitta of an arc. Later, sensor node estimate its position using radius, half length of the chord, and sagitta of an arc. Simulation result shows the performance evaluation of our proposed scheme on various trajectories of mobile beacon such as CIRCLE, SPIRAL, S-CURVE, and HILBERT.

Keywords

WSN Localization DOI Mobile beacon 

References

  1. 1.
    Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRefGoogle Scholar
  2. 2.
    Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.CrossRefGoogle Scholar
  3. 3.
    Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS) (pp. 182–190). IEEE.Google Scholar
  4. 4.
    Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D. Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.CrossRefGoogle Scholar
  5. 5.
    Pathirana, P. N., Bulusu, N., Savkin, A. V., & Jha, S. (2005). Node localization using mobile robots in delay-tolerant sensor networks. IEEE Transactions on Mobile Computing, 4(3), 285–296.CrossRefGoogle Scholar
  6. 6.
    Galstyan, A., Krishnamachari, B., Lerman, K., & Pattem, S. (2004). Distributed online localization in sensor networks using a moving target. In IPSN 2004 third international symposium on information processing in sensor networks (pp. 61–70). IEEE.Google Scholar
  7. 7.
    Sichitiu, M. L., & Ramadurai, V. (2004). Localization of wireless sensor networks with a mobile beacon. In IEEE international conference on mobile ad-hoc and sensor systems (pp. 174–183). IEEE.Google Scholar
  8. 8.
    Corke, P., Peterson, R., & Rus, D. (2005). Networked robots: Flying robot navigation using a sensor net. In Robotics research: The eleventh international symposium (pp. 234–243). Berlin: Springer .Google Scholar
  9. 9.
    Karim, L., Nasser, N., Mahmoud, Q. H., Anpalagan, A., & Salti, T. E. (2015). Range-free localization approach for M2M communication system using mobile anchor nodes. Journal of Network and Computer Applications, 47, 137–146.CrossRefGoogle Scholar
  10. 10.
    Cui, H., & Wang, Y. (2012). Four-mobile-beacon assisted localization in three-dimensional wireless sensor networks. Computers and Electrical Engineering, 38(3), 652–661.CrossRefGoogle Scholar
  11. 11.
    Gholami, M., Cai, N., & Brennan, R. W. (2012). Evaluating alternative approaches to mobile object localization in wireless sensor networks with passive architecture. Computers in Industry, 63(9), 941–947.CrossRefGoogle Scholar
  12. 12.
    Zhou, Z., Peng, Z., Cui, J. H., Shi, Z., & Bagtzoglou, A. C. (2011). Scalable localization with mobility prediction for underwater sensor networks. IEEE Transactions on Mobile Computing, 10(3), 335–348.CrossRefGoogle Scholar
  13. 13.
    Liu, X., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., & Wu, M. (2014). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.CrossRefGoogle Scholar
  14. 14.
    Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.CrossRefGoogle Scholar
  15. 15.
    Bhuiyan, M. Z. A., Wang, G., & Vasilakos, A. V. (2014). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zeng, Y., Li, D., & Vasilakos, A. V. (2013). Real-time data report and task execution in wireless sensor and actuator networks using self-aware mobile actuators. Computer Communications, 36(9), 988–997.CrossRefGoogle Scholar
  17. 17.
    Han, G., Xu, H., Jiang, J., Shu, L., Hara, T., & Nishio, S. (2013). Path planning using a mobile anchor node based on trilateration in wireless sensor networks. Wireless Communications and Mobile Computing, 13(14), 1324–1336.CrossRefGoogle Scholar
  18. 18.
    Ssu, K. F., Ou, C. H., & Jiau, H. C. (2005). Localization with mobile anchor points in wireless sensor networks. IEEE Transactions on Vehicular Technology, 54(3), 1187–1197.CrossRefGoogle Scholar
  19. 19.
    Lee, S., Kim, E., Kim, C., & Kim, K. (2009). Localization with a mobile beacon based on geometric constraints in wireless sensor networks. IEEE Transactions on Wireless Communications, 8(12), 5801–5805.CrossRefzbMATHGoogle Scholar
  20. 20.
    Xiao, B., Chen, H., & Zhou, S. (2008). Distributed localization using a moving beacon in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 19(5), 587–600.CrossRefGoogle Scholar
  21. 21.
    Guerrero, E., Xiong, H. G., Gao, Q., Cova, G., Ricardo, R., & Estvez, J. (2009). ADAL: A distributed range-free localization algorithm based on a mobile beacon for wireless sensor networks. In ICUMT’09 international conference on ultra modern telecommunications and workshops (pp. 1–7). IEEE.Google Scholar
  22. 22.
    Dong, L., & Severance, F. L. (2007). Position estimation with moving beacons in wireless sensor networks. In Wireless communications and networking conference. WCNC 2007 (pp. 2317–2321). IEEE.Google Scholar
  23. 23.
    Koutsonikolas, D., Das, S. M., & Hu, Y. C. (2007). Path planning of mobile landmarks for localization in wireless sensor networks. Computer Communications, 30(13), 2577–2592.CrossRefGoogle Scholar
  24. 24.
    Huang, R., & Zaruba, G. V. (2007). Static path planning for mobile beacons to localize sensor networks. In PerCom workshops’ 07. Fifth annual IEEE international conference on pervasive computing and communications workshops (pp. 323–330). IEEE.Google Scholar
  25. 25.
    Hu, Z., Gu, D., Song, Z., & Li, H. (2008). Localization in wireless sensor networks using a mobile anchor node. In IEEE/ASME international conference on advanced intelligent mechatronics. AIM 2008 (pp. 602–607). IEEE.Google Scholar
  26. 26.
    He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization schemes for large scale sensor networks. In Proceedings of the 9th annual international conference on Mobile computing and networking (pp. 81–95). ACM.Google Scholar
  27. 27.
    Vivekanandan, V., & Wong, V. W. (2007). Concentric anchor beacon localization algorithm for wireless sensor networks. IEEE Transactions on Vehicular Technology, 56(5), 2733–2744.CrossRefGoogle Scholar
  28. 28.
    Doherty, L., Pister, K. S., & El Ghaoui, L. (2001). Convex position estimation in wireless sensor networks. In Proceedings of twentieth annual joint conference of the IEEE computer and communications societies, INFOCOM 2001 (Vol. 3, pp. 1655–1663). IEEE.Google Scholar
  29. 29.
    Liu, C., Scott, T., Wu, K., & Hoffman, D. (2007). Range-free sensor localization with ring overlapping based on comparison of received signal strength indicator. International Journal of Sensor Networks, 2(5–6), 399–413.CrossRefGoogle Scholar
  30. 30.
    Chen, Y. S., Ting, Y. J., Ke, C. H., Chilamkruti, N., & Park, J. H. (2013). Efficient localization scheme with ring overlapping by utilizing mobile anchors in wireless sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 12(2), 20.CrossRefGoogle Scholar
  31. 31.
    Woodward, E. (1978). Geometry-plane, solid and analytic problem solver, re-search and education association (p. 359). ISBN 9780878915101.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations