Wireless Networks

, Volume 22, Issue 8, pp 2563–2577 | Cite as

Shielding video streaming against packet losses over VANETs

Article

Abstract

Vehicular ad-hoc networks (VANETs) are being widely adopted in the last few years. This type of network enables the utilization of a large diversity of distributed applications, such as road and traffic alerts, autonomous driving capabilities and video distribution. Video applications can be considered one of the most demanding services because it needs a steady and continuous flow of information. This presents a set of challenges to VANETs considering their scarce network resources due to the vehicle movement and time-varying wireless channels. Considering the above mentioned issues, an adaptive quality of experience (QoE)-driven mechanism is needed to provide live transmission capabilities to video-equipped vehicles. This mechanism has to overcome the challenges to grant a high-qua lity video transmission without adding any unnecessary network overhead. To this end, a forward error correction (FEC) technique can be adapted to enhance the video distribution, leading to higher QoE for end users. The proposed self-adaptive FEC-based mechanism (SHIELD) uses several video characteristics and specific VANETs details to safeguard real-time video streams against packet losses. One of the main contributions of this work is the combined used of network density, signal-to-noise ratio, packet loss rate, and the vehicle’s position. This allows SHIELD to better protect the video sequences and enhance the QoE. In doing that, we are able to improve the user experience, while saving network resources. The advantages and drawbacks of the proposed mechanism are demonstrated through extensive experiments and assessed with QoE metrics, proving that it outperforms both adaptive and non-adaptive mechanisms.

Keywords

VANETs Forward error correction (FEC) Unequal error protection (UEP) Fuzzy logic Quality of experience (QoE) 

References

  1. 1.
    comScore (2013, February). Brazilian online video audience reaches 43 million unique viewers in december 2012. Technical report, comScore inc. http://www.comscore.com/Insights/Press_Releases/2013/2/Brazilian_On-line_Video_Audience_Reaches_43_Million_Unique_Viewers_in_December_2012.
  2. 2.
    Adobe Digital Index. (2014). U.S. digital video benchmark report. Technical report, Adobe (Q2 2014).Google Scholar
  3. 3.
    Zhou, L., Zhang, Y., Song, K., Jing, W., & Vasilakos, A. V. (2011). Distributed media services in p2p-based vehicular networks. IEEE Transactions on Vehicular Technology, 60(2), 692–703.CrossRefGoogle Scholar
  4. 4.
    Gerla, M., Wu, C., Pau, G., & Zhu, X. (2014). Content distribution in VANETs. Vehicular Communications, 1(1), 3–12. doi:10.1016/j.vehcom.2013.11.001.CrossRefGoogle Scholar
  5. 5.
    Immich, R., Cerqueira, E., & Curado, M. (2013). Cross-layer fec-based mechanism for packet loss resilient video transmission. In E. Biersack, C. Callegari, M. Matijasevic (Eds.), Data traffic monitoring and analysis. Lecture notes in computer science (vol. 7754, pp. 320–336). Springer, Berlin. doi:10.1007/978-3-642-36784-7_13.
  6. 6.
    Immich, R., Cerqueira, E., & Curado, M. (2014). Ensuring qoe in wireless networks with adaptive fec and fuzzy logic-based mechanisms. In 2014 IEEE international conference on communications (ICC) (pp. 1687–1692). doi:10.1109/ICC.2014.6883565.
  7. 7.
    Soldo, F., Casetti, C., Chiasserini, C., & Chaparro, P. A. (2011). Video streaming distribution in vanets. IEEE Transactions on Parallel and Distributed Systems, 22(7), 1085–1091. doi:10.1109/TPDS.2010.173.CrossRefGoogle Scholar
  8. 8.
    Shen, Z., Luo, J., Zimmermann, R., & Vasilakos, A. V. (2011). Peer-to-peer media streaming: Insights and new developments. Proceedings of the IEEE, 99(12), 2089–2109.CrossRefGoogle Scholar
  9. 9.
    Jiang, T., Wang, H., & Vasilakos, A. V. (2012). Qoe-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.CrossRefGoogle Scholar
  10. 10.
    Bellalta, B., Belyaev, E., Jonsson, M., & Vinel, A. (2014). Performance evaluation of IEEE 802.11p-enabled vehicular video surveillance system. IEEE Communications Letters, 18(4), 708–711. doi:10.1109/LCOMM.2014.022514.140206.CrossRefGoogle Scholar
  11. 11.
    Marwaha, S., Srinivasan, D., Tham, C.K., & Vasilakos, A. (2004). Evolutionary fuzzy multi-objective routing for wireless mobile ad hoc networks. In Congress on evolutionary computation, 2004. CEC2004 (vol. 2, pp. 1964–1971). IEEE.Google Scholar
  12. 12.
    Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRefGoogle Scholar
  13. 13.
    Pham, T. A. Q., Piamrat, K., & Viho, C. (2014). Qoe-aware routing for video streaming over vanets. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–5). doi:10.1109/VTCFall.2014.6966141.
  14. 14.
    Wu, H., & Ma, H. (2014). Opportunistic routing for live video streaming in vehicular ad hoc networks. In 2014 IEEE 15th international symposium on a world of wireless, mobile and multimedia networks (WoWMoM) (pp. 1–3). doi:10.1109/WoWMoM.2014.6919002.
  15. 15.
    Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.CrossRefGoogle Scholar
  16. 16.
    Nafaa, A., Taleb, T., & Murphy, L. (2008). Forward error correction strategies for media streaming over wireless networks. IEEE Communications Magazine, 46(1), 72–79. doi:10.1109/MCOM.2008.4427233.CrossRefGoogle Scholar
  17. 17.
    Immich, R., Borges, P., Cerqueira, E., & Curado, M. (2015). QoE-driven video delivery improvement using packet loss prediction. International Journal of Parallel, Emergent and Distributed Systems.Google Scholar
  18. 18.
    Zhou, L., Chao, H.-C., & Vasilakos, A. V. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.CrossRefGoogle Scholar
  19. 19.
    Greengrass, J., Evans, J., & Begen, A. C. (2009). Not all packets are equal, part I: Streaming video coding and sla requirements. IEEE Internet Computing, 13, 70–75. doi:10.1109/MIC.2009.14.CrossRefGoogle Scholar
  20. 20.
    Wan, Z., Xiong, N., Ghani, N., Vasilakos, A., & Zhou, L. (2014). Adaptive unequal protection for wireless video transmission over IEEE 802.11e networks. Multimedia Tools and Applications, 72(1), 541–571. doi:10.1007/s11042-013-1378-z.CrossRefGoogle Scholar
  21. 21.
    Raju, G. V. S., Zhou, J., & Kisner, R. A. (1991). Hierarchical fuzzy control. International Journal of Control, 54(5), 1201–1216. doi:10.1080/00207179108934205.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Rubino, G. (2005). Quantifying the quality of audio and video transmissions over the internet: The PSQA approach. Design and operations of communication networks: A review of wired and wireless modeling and management challenges. London: Imperial College Press.Google Scholar
  23. 23.
    Asefi, M., Mark, J. W., & Shen, X. (2012). A mobility-aware and quality-driven retransmission limit adaptation scheme for video streaming over vanets. IEEE Transactions on Wireless Communications, 11(5), 1817–1827. doi:10.1109/TWC.2012.030812.111064.CrossRefGoogle Scholar
  24. 24.
    Naeimipoor, F., & Boukerche, A. (2014). A hybrid video dissemination protocol for vanets. In 2014 IEEE international conference on communications (ICC) (pp. 112–117). doi:10.1109/ICC.2014.6883304.
  25. 25.
    Huynh-Thu, Q., & Ghanbari, M. (2008). Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 44, 800–8011.CrossRefGoogle Scholar
  26. 26.
    Wang, Z., & Hassan, M. (2012). Blind xor: Low-overhead loss recovery for vehicular safety communications. IEEE Transactions on Vehicular Technology, 61(1), 35–45. doi:10.1109/TVT.2011.2172010.CrossRefGoogle Scholar
  27. 27.
    Rezende, C., Almulla, M., & Boukerche, A. (2013). The use of erasure coding for video streaming unicast over vehicular ad hoc networks. In 2013 IEEE 38th conference on local computer networks (LCN), pp. 715–718. doi:10.1109/LCN.2013.6761318.
  28. 28.
    Immich, R., Cerqueira, E., & Curado, M. (2015). Adaptive qoe-driven video transmission over vehicular ad-hoc networks. In 2015 IEEE conference on computer communications workshops (INFOCOM WKSHPS).Google Scholar
  29. 29.
    Vlavianos, A., Law, L. K., Broustis, I., Krishnamurthy, S. V., & Faloutsos, M. (2008). Assessing link quality in IEEE 802.11 wireless networks: Which is the right metric? In IEEE 19th international symposium on personal, indoor and mobile radio communications, 2008. PIMRC 2008 (pp. 1–6). doi:10.1109/PIMRC.2008.4699837.
  30. 30.
    Wan, Z., Xiong, N., & Yang, L. (2015). Cross-layer video transmission over IEEE 802.11e multihop networks. Multimedia Tools and Applications, 74(1), 5–23. doi:10.1007/s11042-013-1447-3.CrossRefGoogle Scholar
  31. 31.
    Martini, M. G., Mazzotti, M., Lamy-Bergot, C., Huusko, J., & Amon, P. (2007). Content adaptive network aware joint optimization of wireless video transmission. IEEE Communications Magazine, 45(1), 84–90. doi:10.1109/MCOM.2007.284542.CrossRefGoogle Scholar
  32. 32.
    Immich, R., Cerqueira, E., & Curado, M. (2014). Towards the enhancement of uav video transmission with motion intensity awareness. In Wireless Days (WD), 2014 IFIP.Google Scholar
  33. 33.
    Immich, R., Cerqueira, E., & Curado, M. (2013). Adaptive video-aware fec-based mechanism with unequal error protection scheme. In Proceedings of the 28th annual ACM symposium on applied computing (pp. 981–988). ACM.Google Scholar
  34. 34.
    Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 22(4), 469–483. doi:10.1145/235815.235821.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Bentley, J. L., Preparata, F. P., & Faust, M. G. (1982). Approximation algorithms for convex hulls. Communications of the ACM, 25(1), 64–68. doi:10.1145/358315.358392.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Wong, K.-W., Tikk, D., Gedeon, T. D., & Koczy, L. T. (2005). Fuzzy rule interpolation for multidimensional input spaces with applications: A case study. IEEE Transactions on Fuzzy Systems, 13(6), 809–819. doi:10.1109/TFUZZ.2005.859316.CrossRefGoogle Scholar
  37. 37.
    Vanne, J., Aho, E., Hamalainen, T. D., & Kuusilinna, K. (2006). A high-performance sum of absolute difference implementation for motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 16(7), 876–883. doi:10.1109/TCSVT.2006.877150.CrossRefGoogle Scholar
  38. 38.
    Henderson, T. R., Roy, S., Floyd, S., & Riley, G. F. (2006). Ns-3 project goals. In Proceeding from the 2006 workshop on Ns-2: The IP network simulator. WNS2 ’06. ACM, New York, NY. doi:10.1145/1190455.1190468.
  39. 39.
    Klaue, J., Rathke, B., & Wolisz, A. (2003). Evalvid—A framework for video transmission and quality evaluation. 13th International conference on modeling techniques and tools for computer performance evaluation (pp. 255–272).Google Scholar
  40. 40.
    Xiph.org Video Test Media [derf’s collection]. http://media.xiph.org/video/derf/.
  41. 41.
    Jiang, D., & Delgrossi, L. (2008). IEEE 802.11p: Towards an international standard for wireless access in vehicular environments. In IEEE vehicular technology conference, 2008. VTC Spring 2008. (pp. 2036–2040). doi:10.1109/VETECS.2008.458.
  42. 42.
    Katsaros, K., Dianati, M., Tafazolli, R., & Kernchen, R. (2011). Clwpr—A novel cross-layer optimized position based routing protocol for vanets. In 2011 IEEE vehicular networking conference (VNC) (pp. 139–146). doi:10.1109/VNC.2011.6117135.
  43. 43.
    Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D. (2011). Sumo–simulation of urban mobility. In The third international conference on advances in system simulation (SIMUL 2011), Barcelona.Google Scholar
  44. 44.
    Mittag, J., Papanastasiou, S., Hartenstein, H., & Strom, E. G. (2011). Enabling accurate cross-layer PHY/MAC/NET simulation studies of vehicular communication networks. Proceedings of the IEEE, 99(7), 1311–1326. doi:10.1109/JPROC.2010.2103291.CrossRefGoogle Scholar
  45. 45.
    Taliwal, V., Jiang, D., Mangold, H., Chen, C., & Sengupta, R. (2004). Empirical determination of channel characteristics for DSRC vehicle-to-vehicle communication. In Proceedings of the 1st ACM international workshop on vehicular ad hoc networks. VANET ’04 (pp. 88–88). ACM, New York, NY. doi:10.1145/1023875.1023890.
  46. 46.
    Winkler, S., & Mohandas, P. (2008). The evolution of video quality measurement: From PSNR to hybrid metrics. IEEE Transactions on Broadcasting, 54(3), 660–668. doi:10.1109/TBC.2008.2000733.CrossRefGoogle Scholar
  47. 47.
    Chikkerur, S., Sundaram, V., Reisslein, M., & Karam, L. J. (2011). Objective video quality assessment methods: A classification, review, and performance comparison. IEEE Transactions on Broadcasting, 57(2), 165–182. doi:10.1109/TBC.2011.2104671.CrossRefGoogle Scholar
  48. 48.
    Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. doi:10.1109/TIP.2003.819861.CrossRefGoogle Scholar
  49. 49.
    Pinson, M. H., & Wolf, S. (2004). A new standardized method for objectively measuring video quality. IEEE Transactions on Broadcasting, 50(3), 312–322.CrossRefGoogle Scholar
  50. 50.
    Vatolin, D., Moskin, A., Pretov, O., & Trunichkin, N. Msu video quality measurement tool. http://compression.ru/video/quality_measure/video_measurement_tool_en.html.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal
  2. 2.Faculty of Computer EngineeringFederal University of ParaBelemBrazil

Personalised recommendations