Advertisement

Wireless Networks

, Volume 22, Issue 7, pp 2355–2367 | Cite as

Joint scheduling and routing using space–time graphs for TDM wireless mesh networks

  • Salik Warsi
  • Vakul Jindal
  • Saket Kumar
  • Deepak Koli
  • Amitabha Bagchi
  • Vinay J. Ribeiro
Article

Abstract

This paper presents a novel algorithm for joint routing and scheduling in TDM wireless mesh networks. We introduce a new construct, called a “space–time graph,” which incorporates the spatial and temporal aspects of routing in one structure by replicating a spatial network connectivity graph in layers along the time dimension. The power of the space–time graph lies in the fact that a path from one node to another in it specifies both a physical route in space as well as a schedule in time for a message. Hence the complicated and intractable problem of routing and scheduling reduces to the relatively simpler problem of determining shortest paths in a graph. Through simulations we show that a simply greedy algorithm on the space–time graph outperforms two state-of-the-art methods in terms of time taken to successfully transmit a set of messages from their sources to their destinations.

Keywords

Scheduling Routing Time-division multiplexing  Wireless Mesh networks 

References

  1. 1.
    Adler, M., Rosenberg, A. L., Sitaraman, R. K., & Unger, W. (1998). Scheduling time-constrained communication in linear networks. In Proceedings of the 10th annual symposium on parallel algorithms and architectures (SPAA’98). ACM, New York, pp. 269–278.Google Scholar
  2. 2.
    Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.CrossRefzbMATHGoogle Scholar
  3. 3.
    Badia, L., Botta, A., & Lenzini, L. (2009). A genetic approach to joint routing and link scheduling for wireless mesh networks. Ad Hoc Networks, 7(4), 654–664.CrossRefGoogle Scholar
  4. 4.
    Bhatia, R., & Kodialam, M. (2004). On power efficient communication over multi-hop wireless networks: Joint routing, scheduling and power control. In INFOCOM 2004. Twenty-third annual joint conference of the IEEE computer and communications societies, Vol. 2. IEEE, pp. 1457–1466.Google Scholar
  5. 5.
    Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion+ dilation in networks via Quality of Routing games. IEEE Transactions on Computers, 61(9), 1270–1283.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Capone, A., Filippini, I., & Martignon, F. (2008). Joint routing and scheduling optimization in wireless mesh networks with directional antennas. In IEEE international conference on communications, 2008. ICC’08. IEEE, pp. 2951–2957.Google Scholar
  7. 7.
    Chen, L., Low, S., Chiang, M., & Doyle, J. (2006). Cross-layer congestion control, routing and scheduling design in ad hoc wireless networks. In INFOCOM 2006. Proceedings of the 25th IEEE international conference on computer communications, pp. 1–13.Google Scholar
  8. 8.
    Cruz, R. L., & Santhanam, A. V. (2003). Optimal routing, link scheduling and power control in multihop wireless networks. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE societies, Vol. 1. IEEE, pp. 702–711.Google Scholar
  9. 9.
    Cui, S., Madan, R., Goldsmith, A., & Lall, S. (2005). Joint routing, MAC, and link layer optimization in sensor networks with energy constraints. In 2005 IEEE international conference on communications, 2005. ICC 2005, Vol. 2. IEEE, pp. 725–729.Google Scholar
  10. 10.
    Djukic, P., & Valaee, S. (2009). Delay aware link scheduling for multi-hop TDMA wireless networks. IEEE/ACM Transactions on Networking (TON), 17(3), 870–883.CrossRefGoogle Scholar
  11. 11.
    Duarte, P. B., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.CrossRefGoogle Scholar
  12. 12.
    Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.Google Scholar
  13. 13.
    Elson, J., & Römer, K. (2003). Wireless sensor networks: A new regime for time synchronization. ACM SIGCOMM Computer Communication Review, 33(1), 149–154.CrossRefGoogle Scholar
  14. 14.
    Gabale, V., Raman, B., Dutta, P., & Kalyanraman, S. (2013). A classification framework for scheduling algorithms in wireless mesh networks. IEEE Communications Surveys & Tutorials, 15(1), 199–222.CrossRefGoogle Scholar
  15. 15.
    Girici, T., & Ephremides, A. (2002). Joint routing and scheduling metrics for ad hoc wireless networks. In Conference record of the thirty-sixth asilomar conference on signals, systems and computers, 2002, Vol. 2. IEEE, pp. 1155–1159.Google Scholar
  16. 16.
    Gore, A., & Karandikar, A. (2011). Link scheduling algorithms for wireless mesh networks. In IEEE communications survey and tutorials.Google Scholar
  17. 17.
    Hajek, B., & Sasaki, G. (1988). Link scheduling in polynomial time. IEEE Transactions on Information Theory, 34(5), 910–917.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hiertz, G. R., Zang, Y., Max, S., Junge, T., Weiss, E., & Wolz, B. (2008). IEEE 802.11s: WLAN mesh standardization and high performance extensions. IEEE Network, 22(3), 12–19.CrossRefGoogle Scholar
  19. 19.
    Jain, K., Padhye, J., Padmanabhan, V., & Qiu, L. (2005). Impact on interference on multi-hop wireless network performance. Wireless Networks, 11(4), 471–487.CrossRefGoogle Scholar
  20. 20.
    Jiang, T., Wang, H., & Vasilakos, A. V. (2012). QoE-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.CrossRefGoogle Scholar
  21. 21.
    Kodialam, M., & Nandagopal, T. (2003). Characterizing achievable rates in multi-hop wireless networks: The joint routing and scheduling problem. In ACM Mobicom’03.Google Scholar
  22. 22.
    Li, P., Guo, S., Yu, S., & Vasilakos, A.V. (2012). Codepipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, 2012 Proceedings IEEE. IEEE, pp. 100–108.Google Scholar
  23. 23.
    Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.CrossRefGoogle Scholar
  24. 24.
    Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.MathSciNetGoogle Scholar
  25. 25.
    Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.CrossRefGoogle Scholar
  26. 26.
    Manikantan, S. D., & Anjali, T. (2008). Load aware traffic engineering for mesh networks. Computer Communications, 31(7), 1460–1469.CrossRefGoogle Scholar
  27. 27.
    Marwaha, S., Srinivasan, D., Tham, C. K., & Vasilakos, A. (2004). Evolutionary fuzzy multi-objective routing for wireless mobile ad hoc networks. In: Congress on evolutionary computation, 2004. CEC2004, Vol. 2. IEEE, pp. 1964–1971.Google Scholar
  28. 28.
    Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers. doi: 10.1109/TC.2015.2417543.
  29. 29.
    Mogre, P. S., Hollick, M., & Steinmetz, R. (2006). The IEEE 802.16-2004 mesh mode explained. Multimedia Communications Lab, Technische Universität Darmstadt, Technical Report KOM-TR-2006-08.Google Scholar
  30. 30.
    Molle, C., Peix, F., & Rivano, H. (2008). An optimization framework for the joint routing and scheduling in wireless mesh networks. In IEEE 19th international symposium on personal, indoor and mobile radio communications, 2008. PIMRC 2008. IEEE, pp. 1–5.Google Scholar
  31. 31.
    Noh, K. I., Serpedin, E., & Qaraqe, K. (2008). A new approach for time synchronization in wireless sensor networks: Pairwise broadcast synchronization. IEEE Transactions on Wireless Communications, 7(9), 3318–3322.CrossRefGoogle Scholar
  32. 32.
    Scheideler, C. (1998). Universal routing strategies for interconnection networks (Vol. 1390). Berlin: Springer.zbMATHGoogle Scholar
  33. 33.
    Spyropoulos, T., Rais, R. N., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.CrossRefGoogle Scholar
  34. 34.
    Subramanian, A. P., Buddhikot, M. M., & Miller, S. (2006). Interference aware routing in multi-radio wireless mesh networks. In 2nd IEEE workshop on wireless mesh networks, 2006. WiMesh 2006. IEEE, pp. 55–63.Google Scholar
  35. 35.
    Tassiulas, L., & Ephremides, A. (1992). Jointly optimal routing and scheduling in packet ratio networks. IEEE Transactions on Information Theory, 38(1), 165–168.CrossRefGoogle Scholar
  36. 36.
    Vasilakos, A., Saltouros, M. P., Atlassis, A., & Pedrycz, W. (2003). Optimizing QoS routing in hierarchical atm networks using computational intelligence techniques. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 33(3), 297–312.CrossRefGoogle Scholar
  37. 37.
    Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.CrossRefGoogle Scholar
  38. 38.
    Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.Google Scholar
  39. 39.
    Wang, X., & Garcia-Luna-Aceves, J. (2009). Embracing interference in ad hoc networks using joint routing and scheduling with multiple packet reception. Ad Hoc Networks, 7(2), 460–471.CrossRefGoogle Scholar
  40. 40.
    Wang, Y., Wang, W., Li, X. Y., & Song, W. Z. (2008). Interference-aware joint routing and TDMA link scheduling for static wireless networks. IEEE Transactions on Parallel and Distributed Systems, 19(12), 1709–1726.CrossRefGoogle Scholar
  41. 41.
    Woungang, I., Dhurandher, S. K., Anpalagan, A., & Vasilakos, A. V. (2013). Routing in opportunistic networks. New York: Springer.CrossRefzbMATHGoogle Scholar
  42. 42.
    Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D. Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.CrossRefGoogle Scholar
  43. 43.
    Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2014). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18.CrossRefGoogle Scholar
  44. 44.
    Yao, Y., Cao, Q., & Vasilakos, A. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRefGoogle Scholar
  45. 45.
    Yao, Y., Cao, Q., & Vasilakos, A.V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In 2013 IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS). IEEE, pp. 182–190.Google Scholar
  46. 46.
    Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.CrossRefGoogle Scholar
  47. 47.
    Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 16(1), 92–109.CrossRefGoogle Scholar
  48. 48.
    Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRefGoogle Scholar
  49. 49.
    Zhang, J., Wu, H., Zhang, Q., & Li, B. (2005). Joint routing and scheduling in multi-radio multi-channel multi-hop wireless networks. In 2nd International conference on broadband networks, 2005. BroadNets 2005. IEEE, pp. 631–640.Google Scholar
  50. 50.
    Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.CrossRefGoogle Scholar
  51. 51.
    Zhou, L., Chao, H. C., & Vasilakos, A. V. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Salik Warsi
    • 1
  • Vakul Jindal
    • 1
  • Saket Kumar
    • 1
  • Deepak Koli
    • 1
  • Amitabha Bagchi
    • 1
  • Vinay J. Ribeiro
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations