Wireless Networks

, Volume 22, Issue 4, pp 1329–1341 | Cite as

RVCloud: a routing protocol for vehicular ad hoc network in city environment using cloud computing

  • Sourav Kumar Bhoi
  • Pabitra Mohan Khilar


Routing in Vehicular Ad hoc Network (VANET) is a challenging task due to high mobility of vehicles. In this paper, a RVCloud routing protocol is proposed for VANET to send the data efficiently to the destination vehicle using cloud computing technology. In this protocol, vehicle beacon information is send to the cloud storage through the Road Side Unit (RSU). As vehicles have less storage and computing facility, the information of all the vehicles moving in the city is maintained by the cloud. Source vehicle sends the data to the destination by sending the data to the nearby RSU. After receiving the data, RSU sends a request to the cloud for an optimal RSU information, that takes minimum packet forwarding delay to send the data to the destination. Cloud provides location service by providing destination location and optimal RSU information. Then RSU sends the data to the optimal RSU using internet. By using the internet facility, packet forwarding delay and link disruption problem are reduced. Simulation results show that, RVCloud performs better than VehiCloud, P-GEDIR, GyTAR, A-STAR, and GSR routing protocols.


RVCloud VANET Routing Cloud computing 


  1. 1.
    Bhoi, S. K., & Khilar, P. M. (2013). Vehicular communication: A survey. IET. Networks, 3(3), 204–217.Google Scholar
  2. 2.
    Li, F., & Wang, Y. (2007). Routing in vehicular ad hoc networks: A survey. IEEE Vehicular Technology Magazine, 2(2), 12–22.CrossRefGoogle Scholar
  3. 3.
    Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241.CrossRefGoogle Scholar
  4. 4.
    Sichitiu, M. L., & Kihl, M. (2008). Inter-vehicle communication systems: A survey. IEEE Communications Surveys & Tutorials, 10(2), 88–105.CrossRefGoogle Scholar
  5. 5.
    Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., et al. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials, 13(4), 584–616.CrossRefGoogle Scholar
  6. 6.
    Hafeez, K. A., Zhao, L., Ma, B., & Mark, J. W. (2013). Performance analysis and enhancement of the DSRC for VANET’s safety applications. IEEE Transactions on Vehicular Technology, 62(7), 3069–3083.CrossRefGoogle Scholar
  7. 7.
    Shen, Z., Luo, J., Zimmermann, R., & Vasilakos, A. V. (2011). Peer-to-peer media streaming: Insights and new developments. Proceedings of the IEEE, 99(12), 2089–2109.CrossRefGoogle Scholar
  8. 8.
    Booysen, M. J., Zeadally, S., & Van Rooyen, G. J. (2011). Survey of media access control protocols for vehicular ad hoc networks. IET Communications, 5(11), 1619–1631.CrossRefGoogle Scholar
  9. 9.
    Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, 99(10), 1162–1182.CrossRefGoogle Scholar
  10. 10.
    Schoch, E., Kargl, F., Weber, M., & Leinmuller, T. (2008). Communication patterns in VANETs. IEEE Communications Magazine, 46(11), 119–125.CrossRefGoogle Scholar
  11. 11.
    Harri, J., Filali, F., & Bonnet, C. (2009). Mobility models for vehicular ad hoc networks: A survey and taxonomy. IEEE on Communications Surveys & Tutorials, 11(4), 19–41.CrossRefGoogle Scholar
  12. 12.
    Cheng, H., Xiong, N., Vasilakos, A. V., Yang, L. T., Chen, G., & Zhuang, X. (2012). Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks. Ad Hoc Networks, 10(5), 760–773.CrossRefGoogle Scholar
  13. 13.
    Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.CrossRefGoogle Scholar
  14. 14.
    Whaiduzzaman, M., Sookhak, M., Gani, A., & Buyya, R. (2014). A survey on vehicular cloud computing. Journal of Network and Computer Applications, 40, 325–344.CrossRefGoogle Scholar
  15. 15.
    Baby, D., Sabareesh, R. D., Saravanaguru, R. A. K., & Thangavelu, A. (2013). VCR: Vehicular cloud for road side scenarios. In Advances in Computing and Information Technology (pp. 541–552).Google Scholar
  16. 16.
    Son, J., Eun, H., Oh, H., Kim, S., & Hussain, R. (2012). Rethinking vehicular communications: Merging VANET with cloud computing. In Proceedings of the 2012 IEEE 4th international conference on cloud computing technology and science (CloudCom) (pp. 606–609).Google Scholar
  17. 17.
    Gerla, M. (2012). Vehicular cloud computing. In The 11th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net) (pp. 152–155).Google Scholar
  18. 18.
    Olariu, S., Khalil, I., & Abuelela, M. (2011). Taking VANET to the clouds. International Journal of Pervasive Computing and Communications, 7(1), 7–21.CrossRefGoogle Scholar
  19. 19.
    Fernando, N., Loke, S. W., & Rahayu, W. (2013). Mobile cloud computing: A survey. Future Generation Computer Systems, 29(1), 84–106.CrossRefGoogle Scholar
  20. 20.
    Rahimi, M. R., Ren, J., Liu, C. H., Vasilakos, A. V., & Venkatasubramanian, N. (2014). Mobile cloud computing: A survey, state of art and future directions. Mobile Networks and Applications, 19(2), 133–143.CrossRefGoogle Scholar
  21. 21.
    Al Mamun, M. A., KhairulAnam, M., & Esfar-E-Alam, A. M. (2012). Deployment of cloud computing into VANET to create ad hoc cloud network architecture. In Proceedings of the world congress on engineering and computer science (Vol. 1, pp. 24–26).Google Scholar
  22. 22.
    Wan, J., Zhang, D., Zhao, S., Yang, L., & Lloret, J. (2014). Context-aware vehicular cyber-physical systems with cloud support: Architecture, challenges, and solutions. IEEE on Communications Magazine, 52(8), 106–113.CrossRefGoogle Scholar
  23. 23.
    Rahimi, M. R., Venkatasubramanian, N., Mehrotra, S., & Vasilakos, A. V. (2012). MAPCloud: Mobile applications on an elastic and scalable 2-tier cloud architecture. In Proceedings of the 2012 IEEE/ACM fifth international conference on utility and cloud computing (pp. 83–90).Google Scholar
  24. 24.
    Xu, F., Liu, F., Jin, H., & Vasilakos, A. V. (2014). Managing performance overhead of virtual machines in cloud computing: A survey, state of the art, and future directions. Proceedings of the IEEE, 102(1), 11–31.CrossRefGoogle Scholar
  25. 25.
    Rahimi, M. R., Venkatasubramanian, N., & Vasilakos, A. V. (2013). Music: Mobility-aware optimal service allocation in mobile cloud computing. In IEEE sixth international conference on cloud computing (CLOUD) (pp. 75–82).Google Scholar
  26. 26.
    Zhang, H., Li, B., Jiang, H., Liu, F., Vasilakos, A. V., & Liu, J. (2013). A framework for truthful online auctions in cloud computing with heterogeneous user demands. In Proceedings IEEE on INFOCOM (pp. 1510–1518).Google Scholar
  27. 27.
    Fang, W., Li, Y., Zhang, H., Xiong, N., Lai, J., & Vasilakos, A. V. (2014). On the throughput-energy tradeoff for data transmission between cloud and mobile devices. Information Sciences, 283, 79–93.CrossRefGoogle Scholar
  28. 28.
    Wei, L., Zhu, H., Cao, Z., Jia, W., & Vasilakos, A. V. (2010). Seccloud: Bridging secure storage and computation in cloud. In IEEE 30th international conference on distributed computing systems workshops (ICDCSW) (pp. 52–61).Google Scholar
  29. 29.
    Zhou, L., Zhang, Y., Song, K., Jing, W., & Vasilakos, A. V. (2011). Distributed media services in P2P-based vehicular networks. IEEE Transactions on Vehicular Technology, 60(2), 692–703.CrossRefGoogle Scholar
  30. 30.
    Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE on Wireless Communications, 20(6), 91–98.CrossRefGoogle Scholar
  31. 31.
    Wei, L., Zhu, H., Cao, Z., Dong, X., Jia, W., Chen, Y., et al. (2014). Security and privacy for storage and computation in cloud computing. Information Sciences, 258, 371–386.CrossRefGoogle Scholar
  32. 32.
    Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (Eds.). (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.Google Scholar
  33. 33.
    Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRefGoogle Scholar
  34. 34.
    Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In Proceedings IEEE on INFOCOM, 2012 (pp. 100–108).Google Scholar
  35. 35.
    Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.CrossRefGoogle Scholar
  36. 36.
    Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET communications, 4(7), 810–816.CrossRefGoogle Scholar
  37. 37.
    Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.CrossRefGoogle Scholar
  38. 38.
    Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, 99.Google Scholar
  39. 39.
    Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.Google Scholar
  40. 40.
    Marwaha, S., Srinivasan, D., Tham, C. K., & Vasilakos, A. (2004). Evolutionary fuzzy multi-objective routing for wireless mobile ad hoc networks. In Congress on evolutionary computation, CEC2004 (Vol. 2, pp. 1964–1971).Google Scholar
  41. 41.
    Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE on Communications Surveys & Tutorials, 16(1), 92–109.CrossRefGoogle Scholar
  42. 42.
    Spyropoulos, T., Rais, R. N., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.CrossRefGoogle Scholar
  43. 43.
    Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 8th annual IEEE communications society conference on Sensor, mesh and ad hoc communications and networks (SECON) (pp. 46–54).Google Scholar
  44. 44.
    Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the Steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.MathSciNetGoogle Scholar
  45. 45.
    Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks (TOSN), 11(3), 45.CrossRefGoogle Scholar
  46. 46.
    Fadlullah, Z. M., Taleb, T., Vasilakos, A. V., Guizani, M., & Kato, N. (2010). DTRAB: Combating against attacks on encrypted protocols through traffic-feature analysis. IEEE/ACM Transactions on Networking (TON), 18(4), 1234–1247.CrossRefGoogle Scholar
  47. 47.
    Qin, Y., Huang, D., & Zhang, X. (2012). Vehicloud: Cloud computing facilitating routing in vehicular networks. In IEEE 11th international conference on trust, security and privacy in computing and communications (TrustCom) (pp. 1438–1445).Google Scholar
  48. 48.
    Jerbi, M., Senouci, S. M., Rasheed, T., & Ghamri-Doudane, Y. (2009). Towards efficient geographic routing in urban vehicular networks. IEEE Transactions on Vehicular Technology, 58(9), 5048–5059.CrossRefGoogle Scholar
  49. 49.
    Seet, B. C., Liu, G., Lee, B. S., Foh, C. H., Wong, K. J., & Lee, K. K. (2004). A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications. In Networking technologies, services, and protocols; performance of computer and communication networks; mobile and wireless communications (NETWORKING) (pp. 989–999).Google Scholar
  50. 50.
    Raw, R. S., & Das, S. (2013). Performance analysis of P-GEDIR protocol for vehicular ad hoc network in urban traffic environments. Wireless Personal Communications, 68(1), 65–78.CrossRefGoogle Scholar
  51. 51.
    Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., & Mauve, M. (2003). A routing strategy for vehicular ad hoc networks in city environments. In Proceedings IEEE on intelligent vehicles symposium (pp. 156–161).Google Scholar
  52. 52.
    Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on mobile computing and networking (ICMCN) (pp. 243–254).Google Scholar
  53. 53.
    Chen, Y. S., Lin, Y. W., & Pan, C. Y. (2011). DIR: Diagonal-junction-based routing protocol for vehicular ad hoc networks. Telecommunication Systems, 46(4), 299–316.CrossRefGoogle Scholar
  54. 54.
    Chou, L. D., Yang, J. Y., Hsieh, Y. C., Chang, D. C., & Tung, C. F. (2011). Intersection-based routing protocol for VANETs. Wireless Personal Communications, 60(1), 105–124.CrossRefGoogle Scholar
  55. 55.
    Liu, C., Shu, Y., Yang, O., Xia, Z., & Xia, R. (2013). SDR: A stable direction-based routing for vehicular ad hoc networks. Wireless Personal Communications, 73(3), 1289–1308.CrossRefGoogle Scholar
  56. 56.
    Wickremasinghe, B., Calheiros, R. N., & Buyya, R. (2010, April). Cloudanalyst: A cloudsim-based visual modeller for analysing cloud computing environments and applications. In 24th IEEE international conference on advanced information networking and applications (AINA) (pp. 446–452).Google Scholar
  57. 57.
    Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience, 41(1), 23–50.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations