Advertisement

Wireless Networks

, Volume 22, Issue 4, pp 1181–1197 | Cite as

CADMA: collision-avoidance directional medium access for vehicular ad hoc networks

  • Soonbae Ji
  • Junghyun Kim
  • Cheolwoo YouEmail author
Article
  • 261 Downloads

Abstract

Quick and accurate message transmission is an important research topic for vehicular ad hoc networks (VANET). Most studies assume that the periodic broadcast of beacon frames between vehicles increases the safety of the driver. In particular, there has been a lot of research into broadcasting based on carrier sense multiple access with collision avoidance (CSMA/CA) algorithms for medium access. However, the CSMA/CA algorithm is not an optimum technique for the VANET system, due to the transfer delay that occurs in inducing frequent collisions on transmission signals. In this paper, we propose a collision-avoidance directional medium access (CADMA) protocol and infrastructure-utilized clustering method for VANET to support reliable data transfer. In the proposed scheme, the CADMA protocol uses non-competitive transmission methods and cluster heads (CHs) to manage access by allocating the nodes resources. In addition, the roadside unit (RSU) helps with the clustering process. The simulation results indicate that the CADMA can reduce transmission delays and the collision rate of the broadcasting signal, and have shown that the CADMA can be effectively utilized for the VANET systems.

Keywords

VANET Directional antenna Polling-based MAC Directional MAC Clustering V2V DSRC 

Notes

Acknowledgments

This work was supported by the 2015 MPEES Advanced Research Center Fund of Myongji University in Korea.

References

  1. 1.
    Berbineau, M., Jonsson, M., Bonnin, J.-M., Cherkaoui, S., AGUADO, M., Rico-Garcia, C., et al. (Eds.). (2013). Communication technologies for vehicles. NewYork: Springer. doi: 10.1007/978-3-642-37974-1.Google Scholar
  2. 2.
    Jing, Z., & Sumit, R. (2003). Mac for dedicated short range communications in intelligent transport system. IEEE Communications Magazine, 41(12), 60–67. doi: 10.1109/MCOM.2003.1252800.CrossRefGoogle Scholar
  3. 3.
    Eghbal, H., Alexander, G., Behzad, M., & Djamshid, T. (2014). Survey on location information services for vehicular communication networks. Wireless Networks, 20(5), 1085–1105. doi: 10.1007/s11276-013-0666-x.CrossRefGoogle Scholar
  4. 4.
    Hossain, A. K. M. Mahtab, Preechai, M., & Kanchana, K. (2014). Directed information dissemination in vehicular ad-hoc networks. Wireless Networks, 20(5), 899–916. doi: 10.1007/s11276-013-0655-0.CrossRefGoogle Scholar
  5. 5.
    Guanglin, Z., Youyun, X., Xinbing, W., Xiaohua, T., Jing, L., Xiao, Y. G., et al. (2012). Multicast capacity for vanets with directional antenna and delay constraint. IEEE Journal on Selected Areas in Communications, 30(4), 818–833. doi: 10.1109/JSAC.2012.120515.CrossRefGoogle Scholar
  6. 6.
    Luciano, B., & Marco, D. F. (2007). A cross layered MAC and clustering scheme for efficient Broadcast in VANETs. In Proceedings of IEEE international conference on mobile ad hoc and sensor systems (MASS 07), Pisa, Italy, 18.Google Scholar
  7. 7.
    Gökhan, K., Eylem, E., & Füsun, Ö. (2009). Supporting real-time traffic in multihop vehicle to infrastructure networks. Transportation Research Part C: Emerging Technologies, 18(3), 376–392. doi: 10.1016/j.trc.2009.05.001.Google Scholar
  8. 8.
    Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRefGoogle Scholar
  9. 9.
    IEEE P802.11p, D3.0. (2007). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specification: Amendment: Wireless access in vehicular Environment (WAVE), Draft, 3.Google Scholar
  10. 10.
    IEEE Standard 802.11a. (1999). Wireless LAN medium access control(MAC) and physical layer specifications: High speed physical layer in the \(5\)GHz band.Google Scholar
  11. 11.
    IEEE Standard 802.11-1999. (Reaff 2003). Wireless LAN medium access control(MAC) and physical layer (PHY) specifications.Google Scholar
  12. 12.
    Kassotakis, I. E., Markaki, M. E., & Vasilakos, A. V. (2000). A hybrid genetic approach for channel reuse in multiple access telecommunication networks. IEEE Journal on Selected Areas in Communications, 18(2), 234–243.CrossRefGoogle Scholar
  13. 13.
    Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D.-Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.CrossRefGoogle Scholar
  14. 14.
    Duarte, P. B. F., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.CrossRefGoogle Scholar
  15. 15.
    Flaminio, B., Antonio, C., Matteo, C., & Luigi, F. (2002). RR-ALOHA, a Reliable R-ALOHA broadcast channel for ad-hoc inter-vehicle communication networks. In Proceedings of Med-Hoc-Net 2002. Google Scholar
  16. 16.
    Hassan, A. O., Weihua, Z., & Li, L. (2013). VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE Transactions on Mobile Computing, 12(9), 1724–1736. doi: 10.1109/TMC.2012.142.CrossRefGoogle Scholar
  17. 17.
    Chong, H., Mehrdad, D., Rahim, T., Xing, L., & Xuemin, S. (2012). A novel distributed asynchronous multichannel MAC scheme for large-scale vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 61(7), 3125–3138. doi: 10.1109/TVT.2012.2205596.CrossRefGoogle Scholar
  18. 18.
    Yvonne, G., Bernhard, W., & Hans, P. G. (2007). Cluster-based medium access scheme for VANETs. In Proceedings of IEEE intelligent transportation systems conference(ITSC’2007) (pp. 343–348). Seattle, WA, USA.Google Scholar
  19. 19.
    Hang, S., & Xi, Z. (2007). Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 56(6), 3309–3323. doi: 10.1109/TVT.2007.907233.CrossRefGoogle Scholar
  20. 20.
    Minming, N., Zhangdui, Z., & Dongmei, Z. (2011). MPBC: A mobility prediction-based clustering scheme for ad hoc networks. IEEE Transactions on Vehicular Technology, 60(9), 4549–4559. doi: 10.1109/TVT.2011.2172473.CrossRefGoogle Scholar
  21. 21.
    Ko, Y. B., Shankarkumar, V., & Vaidya, N. F. (2000). Medium Access Control Protocols Using Directional Antennas in Ad Hoc Networks. In IEEE annual joint conference of the IEEE computer and communications societies(INFOCOM’2000) (pp. 13–21). Israel: Tel Aviv.Google Scholar
  22. 22.
    Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., & Polit, S. (2005). Ad Hoc Networking With Directional Antennas: A Complete System Solution. IEEE Journal on Selected Areas in Communications, 23(3), 496–506. doi: 10.1109/JSAC.2004.842556.CrossRefGoogle Scholar
  23. 23.
    Mineo, T., Jay, M., Aifeng, R., & Rajive, B. (2002). Directional virtual carrier sensing for directional antennas in mobile Ad Hoc Networks. In Proceedings of the ACM international symposium on Mobile ad hoc networking & computing(MobiHoc’2002), Lausanne, Switzerland, 183-193, doi: 10.1145/513800.513823.
  24. 24.
    Kai-Ten, F. (2007). LMA: Location- and mobility-aware medium-access control protocols for vehicular ad hoc networks using directional antennas. IEEE Transactions on Vehicular Technology, 56(6), 3324–3336. doi: 10.1109/TVT.2007.906874.CrossRefGoogle Scholar
  25. 25.
    ipuri, A., Ye, S., You, J., & Hiromoto, R.E. (2000). A mac protocol for mobile ad hoc networks using directional antennas. IEEE wireless communications and networking confernce(WCNC’2000), Chicago, IL, USA, 1214-1219, doi: 10.1109/WCNC.2000.904804.
  26. 26.
    Somprakash, B., Siuli, R., & Tetsuro, U. (2006). Enhancing the performance of ad hoc wireless networks with smart antennas. New York: Auerbach Publications.Google Scholar
  27. 27.
    Romit, R.C., & Nitin, H.V. (2004). Deafness: A mac problem in ad hoc networks when using directional antennas. In Proceedings of IEEE international conference on network protocols(ICNP’2004), Berlin, Germany, 283-292, doi: 10.1109/ICNP.2004.1348118.
  28. 28.
    Korakis, T., Jakllari, G., & Tassiulas, L. (2003). A MAC protocol for full exploitation of directional antennas in ad-hoc wireless networks. In proceedings of the acm international symposium on mobile ad hoc networking and computing(MobiHoc’2003), doi: 10.1145/778415.778428.
  29. 29.
    Ralf, S., Alain, L., Andreas, F., Lars, E., & Wolfgang, E. (2006). Analysis of path characteristics and transport protocol design in vehicular ad hoc networks. In proceedings of ieee vehicular technology conference(VTC’2006-Spring), Melbourne, Australia, 528-532, doi: 10.1109/VETECS.2006.1682880.
  30. 30.
    Ephremides, A., Wieselthier, J. E., & Baker, D. J. (1987). A design concept for reliable mobile radio networks with frequency hopping signaling. Proceedings of the IEEE, 75(1), 56–73. doi: 10.1109/PROC.1987.13705.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Information and Communications EngineeringMyongji UniversityYonginSouth Korea

Personalised recommendations