Advertisement

Wireless Networks

, Volume 22, Issue 4, pp 1221–1233 | Cite as

Joint physical and link layer error control analysis for nanonetworks in the Terahertz band

  • N. Akkari
  • J. M. Jornet
  • P. Wang
  • E. Fadel
  • L. Elrefaei
  • M. G. A. Malik
  • S. Almasri
  • I. F. Akyildiz
Article

Abstract

Nanonetworks consist of nano-sized communicating devices which are able to perform simple tasks at the nanoscale. The limited capabilities of individual nanomachines and the Terahertz (THz) band channel behavior lead to error-prone wireless links. In this paper, a cross-layer analysis of error-control strategies for nanonetworks in the THz band is presented. A mathematical framework is developed and used to analyze the tradeoffs between Bit Error Rate, Packet Error Rate, energy consumption and latency, for five different error-control strategies, namely, Automatic Repeat reQuest (ARQ), Forward Error Correction (FEC), two types of Error Prevention Codes (EPC) and a hybrid EPC. The cross-layer effects between the physical and the link layers as well as the impact of the nanomachine capabilities in both layers are taken into account. At the physical layer, nanomachines are considered to communicate by following a time-spread on-off keying modulation based on the transmission of femtosecond-long pulses. At the link layer, nanomachines are considered to access the channel in an uncoordinated fashion, by leveraging the possibility to interleave pulse-based transmissions from different nodes. Throughout the analysis, accurate path loss, noise and multi-user interference models, validated by means of electromagnetic simulation, are utilized. In addition, the energy consumption and latency introduced by a hardware implementation of each error control technique, as well as, the additional constraints imposed by the use of energy-harvesting mechanisms to power the nanomachines, are taken into account. The results show that, despite their simplicity, EPCs outperform traditional ARQ and FEC schemes, in terms of error correcting capabilities, which results in further energy savings and reduced latency.

Keywords

Nanonetworks Terahertz band Error control Pulse-based communication 

References

  1. 1.
    Abadal, S., Alarcon, E., Cabellos-Aparicio, A., Lemme, M., & Nemirovsky, M. (2013). Graphene-enabled wireless communication for massive multicore architectures. IEEE Communications Magazine, 51(11), 137–143.CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks (Elsevier) Journal, 1(1), 3–19.CrossRefGoogle Scholar
  3. 3.
    Bai, P., Zhu, G., Liu, Y., Chen, J., Jing, Q., Yang, W., et al. (2013). Cylindrical rotating triboelectric nanogenerator. ACS Nano, 7(7), 6361–6366.CrossRefGoogle Scholar
  4. 4.
    Cabellos-Aparicio, A., Llatser, I., Alarcon, E., Hsu, A., & Palacios, T. (2015). Use of thz photoconductive sources to characterize tunable graphene rf plasmonic antennas. IEEE Transactions on Nanotechnology, 14(2), 390–396.CrossRefGoogle Scholar
  5. 5.
    Chi, K., Zhu, Y. H., Jiang, X., & Leung, V. (2014). Energy-efficient prefix-free codes for wireless nano-sensor networks using ook modulation. IEEE Transactions on Wireless Communications, 13(5), 2670–2682.CrossRefGoogle Scholar
  6. 6.
    Chi, K., Zhu, Y. H., Jiang, X., & Tian, X. (2013). Optimal coding for transmission energy minimization in wireless nanosensor networks. Nano Communication Networks (Elsevier) Journal, 4(3), 120–130.CrossRefGoogle Scholar
  7. 7.
    COMSOL Multiphysics Simulation Software: COMSOL. http://www.comsol.com/products/multiphysics/.
  8. 8.
    Domingo, M. C., & Vuran, M. C. (2012). Cross-layer analysis of error control in underwater wireless sensor networks. Computer Communications (Elsevier) Journal, 35(17), 2162–2172.CrossRefGoogle Scholar
  9. 9.
    Jornet, J. M. (2014). Low-weight error-prevention codes for electromagnetic nanonetworks in the terahertz band. Nano Communication Networks (Elsevier) Journal, 5(1–2), 35–44.CrossRefGoogle Scholar
  10. 10.
    Jornet, J. M., & Akyildiz, I. F. (2011). Channel modeling and capacity analysis of electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.CrossRefGoogle Scholar
  11. 11.
    Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11(3), 570–580.CrossRefGoogle Scholar
  12. 12.
    Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE JSAC, Special Issue on Emerging Technologies for Communications, 12(12), 685–694.Google Scholar
  13. 13.
    Jornet, J. M., & Akyildiz, I. F. (2014). Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks. IEEE Transactions on Communications, 62(5), 1742–1754.CrossRefGoogle Scholar
  14. 14.
    Jornet, J. M., Pujol, J. C., & Pareta, J. S. (2012). Phlame: A physical layer aware mac protocol for electromagnetic nanonetworks in the terahertz band. Nano Communication Networks (Elsevier) Journal, 3(1), 74–81.CrossRefGoogle Scholar
  15. 15.
    Kocaoglu, M., & Akan, O. B. (2013). Minimum energy channel codes for nanoscale wireless communications. IEEE Transactions on Wireless Communications, 12(4), 1492–1500.CrossRefGoogle Scholar
  16. 16.
    Lin, S., & Costello, D. J. (2004). Error control coding: Fundamentals and applications (Vol. 114). Englewood Cliffs: Pearson-Prentice Hall.MATHGoogle Scholar
  17. 17.
    Priebe, S., & Kurner, T. (2013). Stochastic modeling of thz indoor radio channels. IEEE Transactions on Wireless Communications, 12(9), 4445–4455.CrossRefGoogle Scholar
  18. 18.
    Tabor, J. (1990). Noise reduction using low weight and constant weight coding techniques. Tech. rep., MIT, Cambridge, MA.Google Scholar
  19. 19.
    Vuran, M. C., & Akyildiz, I. F. (2009). Error control in wireless sensor networks: A cross layer analysis. IEEE/ACM Transactions on Networking, 17(4), 1186–1199.CrossRefGoogle Scholar
  20. 20.
    Wang, P., Jornet, J. M., Abbas Malik, M., Akkari, N., & Akyildiz, I. F. (2013). Energy and spectrum-aware mac protocol for perpetual wireless nanosensor networks in the terahertz band. Ad Hoc Networks (Elsevier) Journal, 11(8), 2541–2555.CrossRefGoogle Scholar
  21. 21.
    Wang, Z. L. (2008). Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Advanced Functional Materials, 18(22), 3553–3567.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. Akkari
    • 1
  • J. M. Jornet
    • 3
  • P. Wang
    • 4
  • E. Fadel
    • 1
  • L. Elrefaei
    • 1
  • M. G. A. Malik
    • 1
    • 2
  • S. Almasri
    • 1
    • 2
  • I. F. Akyildiz
    • 1
    • 5
  1. 1.Faculty of Computing and Information TechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Faculty of Computing and Information TechnologyUniversity of JeddahJeddahSaudi Arabia
  3. 3.Department of Electrical EngineeringUniversity at Buffalo, The State University of New YorkBuffaloUSA
  4. 4.Department of Electrical Engineering and Computer ScienceWichita State UniversityWichitaUSA
  5. 5.Broadband Wireless Networking Laboratory, School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations