Advertisement

Wireless Networks

, Volume 22, Issue 3, pp 945–957 | Cite as

Fuzzy logic based unequal clustering for wireless sensor networks

  • R. LogambigaiEmail author
  • A. Kannan
Article

Abstract

The primary challenges in outlining and arranging the operations of wireless sensor networks are to enhance energy utilization and the system lifetime. Clustering is a powerful approach to arranging a system into an associated order, load adjusting and enhancing the system lifetime. In a cluster based network, cluster head closer to the sink depletes its energy quickly resulting in hot spot problems. To conquer this issue, numerous algorithms on unequal clustering are contemplated. The drawback in these algorithms is that the nodes which join with the specific cluster head bring overburden for the cluster head. So, we propose an algorithm called fuzzy based unequal clustering in this paper to enhance the execution of the current algorithms. The proposed work is assessed by utilizing simulation. The proposed algorithm is compared with two algorithms, one with an equivalent clustering algorithm called LEACH and another with an unequal clustering algorithm called EAUCF. The simulation results using MATLAB demonstrate that the proposed algorithm provides better performance compared to the other two algorithms.

Keywords

Cluster head Fuzzy logic Fuzzy inference system Residual energy Unequal clustering Wireless sensor network 

References

  1. 1.
    Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRefGoogle Scholar
  2. 2.
    Potdar, V., Sharif, A., & Chang, E. (2009). Wireless sensor networks: A survey. In International conference on advanced information networking and applications workshops, 2009. WAINA’09 (pp. 636–641). IEEE.Google Scholar
  3. 3.
    Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48–56.CrossRefGoogle Scholar
  4. 4.
    Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.CrossRefGoogle Scholar
  5. 5.
    Lee, J.-S., & Cheng, W.-L. (2012). Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. IEEE Sensors Journal, 12(9), 2891–2897.CrossRefGoogle Scholar
  6. 6.
    Li, C., Ye, M., Chen, G., & Wu, J. (2005). An energy-efficient unequal clustering mechanism for wireless sensor networks. In IEEE international conference on mobile adhoc and sensor systems conference, 2005 (pp. 8-pp). IEEE.Google Scholar
  7. 7.
    Bagci, H., & Yazici, A. (2013). An energy aware fuzzy approach to unequal clustering in wireless sensor networks. Applied Soft Computing, 13(4), 1741–1749.CrossRefGoogle Scholar
  8. 8.
    Taheri, H., Neamatollahi, P., Younis, O. M., Naghibzadeh, S., & Yaghmaee, M. H. (2012). An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Networks, 10(7), 1469–1481.CrossRefGoogle Scholar
  9. 9.
    Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (Eds.). (2011). Delay tolerant networks: Protocols and applications. Boca Raton, FL: CRC Press.Google Scholar
  10. 10.
    Zhang, Z., Wang, H., Vasilakos, A. V., & Fang, H. (2012). ECG-cryptography and authentication in body area networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1070–1078.CrossRefGoogle Scholar
  11. 11.
    Duarte, P. B., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.CrossRefGoogle Scholar
  12. 12.
    Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.CrossRefGoogle Scholar
  13. 13.
    Fadlullah, Z. M., Taleb, T., Vasilakos, A. V., Guizani, M., & Kato, N. (2010). DTRAB: Combating against attacks on encrypted protocols through traffic-feature analysis. IEEE/ACM Transactions on Networking (TON), 18(4), 1234–1247.CrossRefGoogle Scholar
  14. 14.
    Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 5(7), 107–113.CrossRefGoogle Scholar
  15. 15.
    Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRefGoogle Scholar
  16. 16.
    Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 46–54).Google Scholar
  17. 17.
    Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors. doi: 10.1155/2009/134165.Google Scholar
  18. 18.
    Liu, X.-Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., & Wu, M.-Y. (2014). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, PP(99), 1.Google Scholar
  19. 19.
    Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.CrossRefGoogle Scholar
  20. 20.
    Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D. Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.CrossRefGoogle Scholar
  21. 21.
    Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRefGoogle Scholar
  22. 22.
    Demestichas, P. P., Stavroulaki, V. A. G., Papadopoulou, L. M., Vasilakos, A. V., & Theologou, M. E. (2004). Service configuration and traffic distribution in composite radio environments. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 34(1), 69–81.CrossRefGoogle Scholar
  23. 23.
    Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for internet of things. Journal of Network and Computer Applications, 42, 120–134.CrossRefGoogle Scholar
  24. 24.
    Afsar, M. M., & Tayarani-N, M.-H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications, 46, 198–226.CrossRefGoogle Scholar
  25. 25.
    Jerusha, S., Kulothungan, K., & Kannan, A. (2012). Location aware cluster based routing in wireless sensor networks. International Journal of Computer and Communication Technology, 3(5), 1–6.Google Scholar
  26. 26.
    Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of IEEE 33rd annual Hawaii international conference on system sciences.Google Scholar
  27. 27.
    Kulothungan, K., Ganapathy, S., Indra Gandhi, S., & Yogesh, P. (2011). Intelligent secured fault tolerant routing in wireless sensor networks using clustering approach. International Journal of Soft Computing, 6(5), 210–215.CrossRefGoogle Scholar
  28. 28.
    Ganapathy, S., Kulothungan, K., Muthuraj Kumar, S., & Vijayalakshmi, M. (2013). Intelligent feature selection and classification techniques for intrusion detection in networks: A survey. EURASIP Journal on Wireless Communication and Networking, 271(1), 1–16.Google Scholar
  29. 29.
    Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.CrossRefGoogle Scholar
  30. 30.
    Gautam, N., & Pyun, J.-Y. (2010). Distance aware intelligent clustering protocol for wireless sensor networks. Journal of Communications and Networks, 12(2), 122–129.CrossRefGoogle Scholar
  31. 31.
    Kim, J.-M., Park, S.-H., Han, Y.-J., & Chung, T.-M. (2008). CHEF: Cluster head election mechanism using fuzzy logic in wireless sensor networks. In Proceedings of IEEE 10th international conference on advanced communication technology, ICACT 2008 (Vol. 1).Google Scholar
  32. 32.
    Gupta, I., Riordan, D., & Sampalli, S. (2005). Cluster-head election using fuzzy logic for wireless sensor networks. In Proceedings of communication networks and services research conference. IEEE.Google Scholar
  33. 33.
    Ban, X., Gao, X. Z., Huang, X., & Vasilakos, A. V. (2007). Stability analysis of the simplest Takagi–Sugeno fuzzy control system using circle criterion. Information Sciences, 177(20), 4387–4409.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Mhemed, R., Aslam, N., Phillips, W., & Comeau, F. (2012). An energy efficient fuzzy logic cluster formation protocol in wireless sensor networks. Procedia Computer Science, 10, 255–262.CrossRefGoogle Scholar
  35. 35.
    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar
  36. 36.
    Khalil, E. A., & Bara’a, A. A. (2011). Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks. Swarm and Evolutionary Computation, 1(4), 195–203.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Information Science and TechnologyAnna UniversityGuindy, ChennaiIndia

Personalised recommendations