Wireless Networks

, Volume 22, Issue 3, pp 839–854 | Cite as

EPTR: expected path throughput based routing protocol for wireless mesh network

  • Xiaoheng DengEmail author
  • Lifang He
  • Qiang Liu
  • Xu Li
  • Lin Cai
  • Zhigang Chen


For effective routing in wireless mesh networks, we proposed a routing metric, expected path throughput (EPT), and a routing protocol, expected path throughput routing protocol (EPTR), to maximize the network throughput . The routing metric EPT is based on the estimated available bandwidth of the routing path, considering the link quality, the inter- and intra-flow interference and the path length. To calculate the EPT of a routing path, we first calculate the expected bandwidth of the link and the clique, and then consider the decay caused by the path length. Based on EPT, a distributed routing protocol EPTR is proposed, aiming to balance the network load and maximize the network throughput. Extensive simulations are conducted to evaluate the performance of the proposed solution. The results show that the proposed EPTR can effectively balance the network load, achieve high network throughput, and out-perform the existing routing protocols with the routing metrics previously proposed for wireless mesh networks.


Wireless mesh network Signal-to-noise ratio Expected path throughput Cross layer design Routing protocol 



The authors acknowledge the support of National Natural Science Foundation of China projects of Grant Nos. 61379058, 61379057, 61350011.


  1. 1.
    Deng, X., Liu, Q., Cai, L., & Chen, Z. (2013). Channel quality and load aware routing in wireless mesh network. In 2013 IEEE on wireless communications and networking conference (WCNC) (pp. 2068–2073).Google Scholar
  2. 2.
    Deng, X., Liu, Q., Li, X., Cai, L., & Chen, Z. (2013). A channel quality and load sensitive routing in wireless mesh network. Chinese Journal of Computers, 36(10), 1–11.Google Scholar
  3. 3.
    Vasilakos, A., Ricudis, C., Anagnostakis, K., Pedryca, W., & Pitsillides, A. (1998, May). Evolutionary-fuzzy prediction for strategic QoS routing in broadband networks. In Fuzzy systems proceedings, 1998. The 1998 IEEE international conference on IEEE world congress on computational intelligence (Vol. 2, pp. 1488–1493).Google Scholar
  4. 4.
    Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion+ dilation in networks via “Quality of Routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Woungang, I., Dhurandher, S. K., Anpalagan, A., & Vasilakos, A. V. (2013) . Routing in opportunistic networks. New York: Springer.CrossRefzbMATHGoogle Scholar
  6. 6.
    Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012, March). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In 2012 Proceedings IEEE INFOCOM (pp. 100–108).Google Scholar
  7. 7.
    Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.CrossRefGoogle Scholar
  8. 8.
    Demestichas, P. P., Stavroulaki, V. A. G., Papadopoulou, L. M., Vasilakos, A. V., & Theologou, M. E. (2004). Service configuration and traffic distribution in composite radio environments. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 34(1), 69–81.CrossRefGoogle Scholar
  9. 9.
    Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.CrossRefGoogle Scholar
  10. 10.
    Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 16(1), 92–109.CrossRefGoogle Scholar
  11. 11.
    Fadlullah, Z. M., Taleb, T., Vasilakos, A. V., Guizani, M., & Kato, N. (2010). DTRAB: Combating against attacks on encrypted protocols through traffic-feature analysis. IEEE/ACM Transactions on Networking (TON), 18(4), 1234–1247.CrossRefGoogle Scholar
  12. 12.
    Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the Internet of Things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.CrossRefGoogle Scholar
  13. 13.
    Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRefGoogle Scholar
  14. 14.
    Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for Internet of Things. Journal of Network and Computer Applications, 42, 120–134.CrossRefGoogle Scholar
  15. 15.
    Liu, J., Wan, J., Wang, Q., Deng, P., Zhou, K., & Qiao, Y. (2015). A survey on position-based routing for vehicular ad hoc networks. Telecommunication Systems. doi: 10.1007/s11235-015-9979-7.
  16. 16.
    Deng, X., He, L., Li, X., Liu, Q., Cai, L., & Chen, Z. (2015). A reliable QoS-aware routing scheme for neighbor area network in smart grid. Peer-to-Peer Networking and Applications, 1–12.Google Scholar
  17. 17.
    Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.CrossRefzbMATHGoogle Scholar
  18. 18.
    Perkins, C., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers (Vol. 24, pp. 234–244). ACM.Google Scholar
  19. 19.
    Perkins, C., & Royer, E. (1999). Ad-hoc on-demand distance vector routing. In Second IEEE workshop on mobile computing systems and applications, 1999, Proceedings, WMCSA99 (pp. 90–100).Google Scholar
  20. 20.
    Clausen, T., Dearlove, C., Jacquet, P., & Herberg, U. (2006). The optimized state routing protocol version 2. draft-ietf-manet-olsrv2-00, Work in progress.Google Scholar
  21. 21.
    Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. Mobile Computing, 353, 153–181.Google Scholar
  22. 22.
    Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.CrossRefGoogle Scholar
  23. 23.
    Zhang, X., Zhang, Y., Yan, F., & Vasilakos, A. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.CrossRefGoogle Scholar
  24. 24.
    Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers. doi: 10.1109/TC.2015.2417543.
  25. 25.
    Liu, A., Jin, X., Cui, G., & Chen, Z. (2013). Deployment guidelines for achieving maximum lifetime and avoiding energy holes in sensor network. Information Sciences, 230, 197–226.CrossRefGoogle Scholar
  26. 26.
    Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.CrossRefGoogle Scholar
  27. 27.
    Yao, Y., Cao, Q., & Vasilakos, A. V. (2013, October). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In 2013 IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS) (pp. 182–190).Google Scholar
  28. 28.
    Xiang, L., Luo, J., & Vasilakos, A. (2011, June). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 46–54).Google Scholar
  29. 29.
    Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.MathSciNetGoogle Scholar
  30. 30.
    Jiang, L., Liu, A., Hu, Y., & Chen, Z. (2015). Lifetime maximization through dynamic ring-based routing scheme for correlated data collecting in WSNs. Computers & Electrical Engineering, 41, 191–215.CrossRefGoogle Scholar
  31. 31.
    Liu, Y., Liu, A., & Chen, Z. (2015). Analysis and improvement of send-and-wait automatic repeat-reQuest protocols for wireless sensor networks. Wireless Personal Communications, 81(3), 923–959.CrossRefGoogle Scholar
  32. 32.
    Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.Google Scholar
  33. 33.
    Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (Eds.). (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.Google Scholar
  34. 34.
    Spyropoulos, T., Rais, R. N., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.CrossRefGoogle Scholar
  35. 35.
    Liu, J., Wan, J., Wang, Q., Li, D., Qiao, Y., & Cai, H. (2015). A novel energy-saving one-sided synchronous two-way ranging algorithm for vehicular positioning. Mobile Networks and Applications. doi: 10.1007/s11036-015-0604-5.
  36. 36.
    Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.CrossRefGoogle Scholar
  37. 37.
    Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRefGoogle Scholar
  38. 38.
    Zhang, Z., Wang, H., Vasilakos, A. V., & Fang, H. (2012). ECG-cryptography and authentication in body area networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1070–1078.CrossRefGoogle Scholar
  39. 39.
    De Couto, D., Aguayo, D., & Morris, R. (2003). A high-throughput path metric for multi-hop wireless routing. In MobiCom (Ed.) (pp. 134–146). ACM.Google Scholar
  40. 40.
    Bicket, J., Aguayo, D., & Morris, R. (2005). Architecture and evaluation of an unplanned 802.11 b mesh network. In Proceedings of the 11th annual international conference on mobile computing and networking (pp. 31–42).Google Scholar
  41. 41.
    Draves, R., Padhye, J., & Zill, B. (2004). Routing in multi-radio, multihop wirelessmesh networks. In MobiCom (Ed.) (pp. 114–128). ACM.Google Scholar
  42. 42.
    Langar, R., Bouabdallah, N., & Boutaba, R. (2009). Mobility-aware clustering algorithms with interference constraints in wireless mesh networks. Computer Networks, 53(1), 25–44.CrossRefzbMATHGoogle Scholar
  43. 43.
    Salonidis, T., & Garetto, M. (2007). Identifying high throughput paths in 802.11 mesh networks: A model-based approach. In IEEE international conference on network protocols, 2007, ICNP 2007 (pp. 21–30).Google Scholar
  44. 44.
    Kowalik, K., & Keegan, B. (2007). Rare C resource aware routing for mesh. In IEEE international conference communications 2007, ICC07 (pp. 4931–4936).Google Scholar
  45. 45.
    Ronghui, H., King-Shan, L., & Jiandong, L. (2012). Hop-by-hop routing in wireless mesh networks with bandwidth guarantees. IEEE Transactions on Mobile Computing, 11(2), 264–277.CrossRefGoogle Scholar
  46. 46.
    Sarr, C., Chaudet, C., & Lassous, I. G. (2008). Bandwidth estimation for IEEE 802.11-based ad hoc networks. IEEE Transactions on Mobile Computing, 7(10), 1228–1241.CrossRefzbMATHGoogle Scholar
  47. 47.
    Yaling, Y., & Kravets, R. (2005). Contention-aware admission control for ad hoc networks. IEEE Transactions on Mobile Computing, 4(4), 363–377.CrossRefGoogle Scholar
  48. 48.
    Jia, Z., Gupta, R., Walrand, J., & Varaiya, P. (2005). Bandwidth guaranteed routing for ad-hoc networks with interference consideration. In Proceedings of 10th IEEE symposium on computers and communications, 2005, ISCC 2005 (pp. 3–9).Google Scholar
  49. 49.
    Duarte, P. B., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.CrossRefGoogle Scholar
  50. 50.
    Del Prado Pavon, J., & Sunghyun, C. (2003. 2003-01-01). Link adaptation strategy for ieee 802.11 wlan via received signal strength measurement. In IEEE international conference on communications, 2003, ICC03 (Vol. 2, pp. 1108–1113).Google Scholar
  51. 51.
    Fan, Y., Li, J., Xu, K., Chen, H., Lu, X., Dai, Y., et al. (2013). Performance analysis of the ieee 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 21(18), 20529–20543.Google Scholar
  52. 52.
    Senthilkumar, D., & Krishnan, A. (2010). Throughput analysis of IEEE 802.11 multirate WLANs with collision aware rate adaptation algorithm. International Journal of Automation and Computing, 7(4), 571–577.CrossRefGoogle Scholar
  53. 53.
    Gupta, R., & Walrand, J. (2004). Approximating maximal cliques in ad-hoc networks. In 15th IEEE International symposium on personal, indoor and mobile radio communications, 2004, PIMRC 2004 (Vol. 1, pp. 365–369).Google Scholar
  54. 54.
    Jiang, W., Jiang, W., Liu, S., Liu, S., Zhu, Y., & Zhu, Y., et al. (2007). Optimizing routing metrics for large-scale multi-radio mesh networks (pp. 1550–1553). IEEE.Google Scholar
  55. 55.
    Bron, C., & Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an undirected graph. Communications of the ACM, 16(9), 575–577.CrossRefzbMATHGoogle Scholar
  56. 56.
    Moon, J. W., & Moser, L. (1965). On cliques in graphs. Israel Journal of Mathematics, 3(1), 23–28.MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    The network simulator ns-2. (2009).

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiaoheng Deng
    • 1
    Email author
  • Lifang He
    • 1
  • Qiang Liu
    • 1
  • Xu Li
    • 1
  • Lin Cai
    • 2
  • Zhigang Chen
    • 3
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada
  3. 3.School of SoftwareCentral South UniversityChangshaChina

Personalised recommendations