Wireless Networks

, Volume 22, Issue 2, pp 663–677 | Cite as

Implementation of OpenFlow based cognitive radio network architecture: SDN&R

  • Suneth Namal
  • Ijaz Ahmad
  • Saad Saud
  • Markku Jokinen
  • Andrei Gurtov
Article

Abstract

The static conventional network architecture is ill-suited to the growing management complexity and highly dynamic wireless network topologies. Software Defined Radio systems and their extension to cognitive and smart radio are characterized by distinct control loops for management which constantly increase network complexity and management inefficiencies, due to clear-cut between radio and core network management. Adding numerous devices and networks together will constantly increase the management cost, thus hinders scalability. Therefore, a holistic solution to synchronize radio and networks status has an elevated demand. To interconnect these systems and devices together, there is a need for a common management interface. OpenFlow is the first standard interface that enables Software Defined Networking (SDN). It can be rolled out in a variety of networking devices to enable improved automation and management by using common Application Program Interfaces to abstract the underlying networking details. The Software Defined Networking & Radio (SDN&R) framework proposed here has a potential combination between SDN and Radio networks to discover the underlying dynamism in cognitive access networks with integrated radio management. By isolating the control plane from the data plane, SDN&R enables a flexible management framework empowered by end-to-end goals through OpenFlow. In this article, we propose, validate, and evaluate the SDN&R architecture. In doing so, first we implement the OpenFlow enabled cognitive basestations (BSs) on Wireless Open-Access Research Platform. Furthermore, we develop software agents on BSs to provide radio status information to the cognitive control application implemented on the SDN controller. The results verify that the proposed framework in-lines with layer-2 or layer-3 forwarding performance. We claim that this work represents the first successful implementation results which synergizes SDN with Cognitive networks that motivates researchers towards SDN based radio resource management.

Keywords

Cognitive networks OpenFlow Wireless SDN Virtual SSID IEEE 802.11 WARP 5G networks 

References

  1. 1.
    Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 4048.CrossRefGoogle Scholar
  2. 2.
    Anwer, M. B., Motiwala, M., Tariq, M., & Feamster, N. (2011). Switchblade: A platform for rapid deployment of network protocols on programmable hardware. ACM SIGCOMM Computer Communication Review, 41(4), 183194.Google Scholar
  3. 3.
    Bansal, M., Mehlman, J., Katti, S., & Levis, P. (2012). Openradio: A programmable wireless dataplane. In Proceedings of the first workshop on Hot topics in software defined networks. ACM, pp. 109114.Google Scholar
  4. 4.
    Benton, K., Camp, L. J., & Small, C. (2013). Openflow vulnerability assessment. In Proceedings of the second ACM SIGCOMM workshop on hot topics in software defined networking. ACM, pp. 151152.Google Scholar
  5. 5.
    Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M. Q., et al. (2010). Energy-efficient cloud computing. The Computer Journal, 53(7), 10451051.CrossRefGoogle Scholar
  6. 6.
    Chowdhury, N. M. K., & Boutaba, R. (2009). Network virtualization: State of the art and research challenges. IEEE Communications Magazine, 47(7), 2026.CrossRefGoogle Scholar
  7. 7.
    Cho, H.-H., Lai, C.-F., Shih, T. K., & Chao, H.-C. (2014). Integration of SDR and SDN for 5G. IEEE Access, 2, 1196–1204.CrossRefGoogle Scholar
  8. 8.
    Desmond, P. (2012). NTT Com announces first carrier-based OpenFlow service. June 13, 2012, http://www.nttcom.tv/2012/06/13/ntt-com-announces-first-carrier-based-openflow-service/sthash.4zGqn7tx.dpuf.
  9. 9.
    Ding, L., & Goubran, R.A. (2003). Speech quality prediction in VoIP using the extended E-model. In Proceedings of IEEE global telecommunications conference (GLOBECOM’03). IEEE, vol. 7, pp. 39743978.Google Scholar
  10. 10.
    Dutta, A., Saha, D., Grunwald, D., & Sicker, D. (2010). An architecture for software defined cognitive radio. In Proceedings of ACM/IEEE symposium on architectures for networking and communications systems (ANCS), pp. 112.Google Scholar
  11. 11.
    El-Gendy, M. A., Bose, A., & Shin, K. G. (2003). Evolution of the Internet QoS and support for soft real-time applications. Proceedings of the IEEE, 91(7), 10861104.CrossRefGoogle Scholar
  12. 12.
    Feng, T., Bi, J., & Hu, H. (2012). TUNOS: A novel SDN-oriented networking operating system. In Proceedings of 20th IEEE international conference on network protocols (ICNP). IEEE, pp. 12.Google Scholar
  13. 13.
    Fortino, G., Di Fatta, G., Pathan, M., & Vasilakos, A. V. (2014). Cloud-assisted body area networks: State-of-the-art and future challenges. Wireless Networks, 20(7), 1–14.CrossRefGoogle Scholar
  14. 14.
    Garbin, D. A. (1998). Toward a national data network: Architectural issues and the role of government. The unpredictable certainty: White papers, p. 217.Google Scholar
  15. 15.
    Gudipati, A., Perry, D., Li, L.E., & Katti, S. (2013). SoftRAN: Software defined radio access network. In Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking. ACM, pp. 25–30.Google Scholar
  16. 16.
    Hoelzle, U. (2012). Openflow@google. 17th Open Networking Summit, pp. 1–10.Google Scholar
  17. 17.
    ITU-T. (2003). Series G: Transmission systems and media—one way transmission time, Digital systems and networks, International telephone connections and circuits—General Recommendations on the transmission quality for an entire international telephone connection—ITU-T Recommendation G. 114, p. 1.Google Scholar
  18. 18.
    Jararweh, Y., Ayyoub, M. A., Doulat, A., Aziz, A., Salameh, H. A. B., & Khreishah, A. A. (2014). SD-CRN: Software defined cognitive radio network framework. In Proceedings of IEEE international conference on cloud engineering (IC2E). IEEE, pp. 592–597.Google Scholar
  19. 19.
    Jokinen, M., & Tuomivaara, H. (2011). LE-WARP: Linux enriched design for wireless open-access research platform. In Proceedings of the 4th international conference on cognitive radio and advanced spectrum management. ACM, p. 16.Google Scholar
  20. 20.
    Khan, A., Kellerer, W., Kozu, K., & Yabusaki, M. (2011). Network sharing in the next mobile network: TCO reduction, management flexibility, and operational independence. IEEE Communications Magazine, 49(10), 134–142.Google Scholar
  21. 21.
    Kim, S., Kang, J. M., Seo, S., & Hong, J. W. K. (2013). A cognitive model-based approach for autonomic fault management in OpenFlow networks. International Journal of Network Management, 23(6), 383–401.CrossRefGoogle Scholar
  22. 22.
    Kobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., Van Reijendam, J., et al. (2014). Maturing of OpenFlow and software-defined networking through deployments. Computer Networks, 61, 151–175.CrossRefGoogle Scholar
  23. 23.
    Kondareddy, Y. R., & Agrawal, P. (2008). Synchronized MAC protocol for multi-hop cognitive radio networks. In IEEE International Conference on Communications (ICC’08). IEEE, pp. 3198–3202.Google Scholar
  24. 24.
    Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., et al. (2010). Onix: A distributed control platform for large-scale production networks. In: OSDI (Vol. 10, ppp. 1–6).Google Scholar
  25. 25.
    Kwon, T. T., Gerla, M., & Das, S. (2002). Mobility management for VoIP service: Mobile IP vs SIP. IEEE Wireless Communications, 9(5), 66–75.CrossRefGoogle Scholar
  26. 26.
    Levy, S. (2012). Going with the flow: Google’s secret switch to the next wave of networking. Wired, April 17, 2012, http://www.wired.com/wiredenterprise/2012/04/going-with-the-flow-google/.
  27. 27.
    Li, L. E., Mao, Z. M., & Rexford, J. (2012). CellSDN: Software-defined cellular networks. Technical report, Princeton University.Google Scholar
  28. 28.
    Lockwood, J. W., McKeown, N., Watson, G., Gibb, G., Hartke, P., Naous, J., et al. (2007). NetFPGA-An open platform for gigabit-rate network switching and routing. In IEEE International Conference on Microelectronic Systems Education (MSE’07). IEEE, pp. 160–161.Google Scholar
  29. 29.
    McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., et al. (2008). OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 38(2), 69–74.CrossRefGoogle Scholar
  30. 30.
    Mendonca, M., Astuto, B. N., Obraczka, K., Turletti, T., et al. (2013). Software defined networking for heterogeneous networks. IEEE MMTC E-Letters, 8(3), 36–39.Google Scholar
  31. 31.
    Mendonca, M., Obraczka, K., & Turletti, T. (2012). The case for software-defined networking in heterogeneous networked environments. In Proceedings of the 2012 ACM conference on CoNEXT student workshop. ACM, pp. 59–60.Google Scholar
  32. 32.
    Mitola, J. (2000). Cognitive radio—An integrated agent architecture for software defined radio (pp. 1–2). Royal Institute of Technology (KTH).Google Scholar
  33. 33.
    Mitola, J., & Maguire, G. Q, Jr. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRefGoogle Scholar
  34. 34.
    Murphy, P., Sabharwal, A., & Aazhang, B. (2006). Design of WARP: A wireless open-access research platform. In Proceedings of European signal processing conference, pp. 1804–1824.Google Scholar
  35. 35.
    Nahum, E. M., Tracey, J., & Wright, C. P. (2007). Evaluating SIP server performance. In Proceedings of ACM SIGMETRICS performance evaluation review. ACM, Vol. 35, pp. 349–350.Google Scholar
  36. 36.
    Namal, S., Ahmad, I., Gurtov, A., & Ylianttila, M. (2013). Enabling secure mobility with openflow. In Proceedings of IEEE SDN for future networks and services (SDN4FNS). IEEE, pp. 1–5.Google Scholar
  37. 37.
    Namal, S., Ahmad, I., Jokinen, M., Gurtov, A., & Ylianttila, M. (2014). SDN core for mobility between cognitive radio and 802.11 networks. In: Proceedings of 8th international conference on next generation mobile apps, services and technologies (NGMAST). IEEE, pp. 272–281.Google Scholar
  38. 38.
    Pavon, J. (1996). Towards integration of service and network management in TINA. Journal of Network and Systems Management, 4(3), 299–318.CrossRefMathSciNetGoogle Scholar
  39. 39.
    Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., & Gu, G. (2012). A security enforcement kernel for openflow networks. In Proceedings of the first workshop on Hot topics in software defined networks. ACM, pp. 121–126.Google Scholar
  40. 40.
    Ramaswamy, R., Weng, N., & Wolf, T. (2004). Characterizing network processing delay. In: Proceedings of IEEE global telecommunications conference GLOBECOM’04. IEEE, Vol. 3, pp. 1629–1634.Google Scholar
  41. 41.
    Rice University WARP Project: http://warpproject.org/.
  42. 42.
    Rodriguez, A., Kostic, D., & Vahdat, A. (2004). Scalability in adaptive multi-metric overlays. In Proceedings of 24th international conference on distributed computing systems. IEEE, pp. 112–121.Google Scholar
  43. 43.
    Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., et al. (2002). SIP: Session initiation protocol. Tech. rep., RFC 3261, Internet Engineering Task Force.Google Scholar
  44. 44.
    Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B., Lake, D., Finnegan, J., et al. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36–43.CrossRefGoogle Scholar
  45. 45.
    Sun, G., Liu, G., & Wang, Y. (2014). SDN architecture for cognitive radio networks. In Proceedings of 1st international workshop on cognitive cellular systems (CCS), pp. 1–5.Google Scholar
  46. 46.
    Sun, G., Liu, G., Zhang, H., & Tan, W. (2013). Architecture on mobility management in OpenFlow-based radio access networks. In Proceedings of IEEE global high tech congress on electronics (GHTCE). IEEE, pp. 88–92.Google Scholar
  47. 47.
    Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88(2), 135.CrossRefGoogle Scholar
  48. 48.
    Yap, K. K., Huang, T. Y., Kobayashi, M., Chan, M., Sherwood, R., Parulkar, G., et al. (2009). Lossless handover with n-casting between WiFi–WiMAX on OpenRoads. ACM Mobicom (Demo), 12(3), 40–52.Google Scholar
  49. 49.
    Zander, J. (1997). Radio resource management in future wireless networks: Requirements and limitations. IEEE Communications Magazine, 35(8), 30–36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Suneth Namal
    • 1
  • Ijaz Ahmad
    • 1
  • Saad Saud
    • 1
  • Markku Jokinen
    • 1
  • Andrei Gurtov
    • 2
    • 3
  1. 1.Department of Communications EngineeringUniversity of OuluOuluFinland
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Department of Computer Science and Engineering, Helsinki Institute for Information Technology (HIIT)Aalto UniversityAaltoFinland

Personalised recommendations