Advertisement

Wireless Networks

, Volume 21, Issue 8, pp 2483–2500 | Cite as

QoE-based optimal resource allocation in wireless healthcare networks: opportunities and challenges

  • Di LinEmail author
  • Fabrice Labeau
  • Athanasios V. Vasilakos
Article

Abstract

Ubiquitous health monitoring is a mobile health service with the aim of monitoring patients’ conditions anytime and anywhere by collecting and transferring biosignal data from patients to health-service providers (e.g., healthcare centers). As a critical issue in ubiquitous health monitoring, wireless resource allocation can influence the performance of health monitoring, and the majority of work in wireless resource allocation for health monitoring has focused on quality-of-service oriented allocation schemes with primary challenges at the physical and MAC layers. Recently, quality-of-experience (QoE) oriented resource allocation schemes in wireless health monitoring have attracted attentions as a promising design to a better service of healthcare monitoring. In this paper, we overview the metrics of assessing the quality of medical images, and discuss the performance of these metrics in QoE-oriented resource allocation for health monitoring. We start with addressing the state-of-the-art QoE metrics by providing a taxonomy of the different metrics employed in assessing medical images. We then present the design of resource allocation schemes for health monitoring. After that, we present a case study to compare the performance of different classes of metrics in designing resource allocation schemes. We end the paper with a few open issues in the design of novel QoE metrics for resource allocation in health monitoring.

Keywords

Wireless health monitoring Resource allocation Quality of experience 

Notes

Acknowledgments

This work was partially supported by National Natural Science Foundation of China (No. 61370202) and partially supported by a grant from the National High Technology Research and Development Program of China (863 Program, No. 2012AA02A614).

References

  1. 1.
    Robson, B., & Baek, O. K. (2009). The engines of Hippocrates: From the dawn of medicine to medical and pharmaceutical informatics. New York: Wiley.CrossRefGoogle Scholar
  2. 2.
    Rashvand, H. F., & Salcedo, V. T. (2008). Ubiquitous wireless telemedicine. IET Communications, 2(2), 237–254.CrossRefGoogle Scholar
  3. 3.
    Dowler, N., & Hall, C. J. (1995). Safety issues in telesurgery—Summary. In IEEE Colloquium on ’Towards Telesugery’.Google Scholar
  4. 4.
    Choi, Y. B., & Krause, J. S. (2006). Telemedicine in the USA: Standardization through information management and technical applications. IEEE Communications Magazine, 44(4), 41–48.CrossRefGoogle Scholar
  5. 5.
    Istepanian, R. S., & Jovanov, H. E. (2004). Guest editorial introduction to the special section on M-Health: Beyond seamless mobility and global wireless health-care connectivity. IEEE Transactions on Information Technology in Biomedicine, 8(4), 405–414.CrossRefGoogle Scholar
  6. 6.
    Kern, S. E., & Jaron, D. (2003). Healthcare technology, economics and policy: An evolving balance. IEEE Engineering in Medicine and Biology Magazine, 22(1), 16–19.CrossRefGoogle Scholar
  7. 7.
    Vasilakos, A. V., & Hsiao-Hwa, C. (2009). Guest editorial wireless and pervasive communications for healthcare. IEEE Journal on Selected Areas in Communications, 27(4), 361–364.CrossRefGoogle Scholar
  8. 8.
    Golmie, N., & Cypher, D. (2005). Performance analysis of low rate wireless technologies for medical applications. Computer Communications, 28(10), 1266–1275.CrossRefGoogle Scholar
  9. 9.
    Varshney, U., & Sneha, S. (2006). Patient monitoring using ad hoc wireless networks: Reliability and power management. IEEE Communications Magazine, 44(4), 49–55.CrossRefGoogle Scholar
  10. 10.
    Varshney, U. (2008). A framework for supporting emergency messages in wireless patient monitoring. Decision Support Systems, 45(4), 981–996.CrossRefGoogle Scholar
  11. 11.
    Sneha, S., & Varshney, U. (2009). Enabling ubiquitous patient monitoring: Model, decision protocols, opportunities and challenges. Decision Support Systems, 46(3), 606–619.CrossRefGoogle Scholar
  12. 12.
    Vergados, D. J., & Vergados, D. D. (2006). NGL03-6: Applying wireless DiffServ for QoS provisioning in mobile emergency telemedicine. In IEEE Global Telecommunications Conference.Google Scholar
  13. 13.
    Cypher, D., & Chevrollier, N. (2006). Prevailing over wires in healthcare environments: Benefits and challenges. IEEE Communications Magazine, 44(4), 56–63.CrossRefGoogle Scholar
  14. 14.
    Acampora, G., Cook, D. J., Rashidi, P., & Vasilakos, A. V. (2013). A survey on ambient intelligence in healthcare. Proceedings of the IEEE, 101(12), 2470–2494.CrossRefGoogle Scholar
  15. 15.
    Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. M. (2011). Body area networks: A survey. MONET, 16(2), 171–193.Google Scholar
  16. 16.
    Zhou, J., Lin, X., & Vasilakos, A. (2013). Securing m-healthcare social networks: Challenges, countermeasures and future directions. IEEE Wireless Communications, 20(4), 12–21.CrossRefGoogle Scholar
  17. 17.
    He, D., Chen, C., Chan, S., Bu, J., & Vasilakos, A. V. (2012). ReTrust: Attack-resistant and lightweight trust management for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(4), 623–632.CrossRefGoogle Scholar
  18. 18.
    He, D., Chen, C., Chan, S., Bu, J., & Vasilakos, A. V. (2012). A distributed trust evaluation model and its application scenarios for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1164–1175.CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., Wang, H., Vasilakos, A. V., & Fang, H. (2012). ECG-cryptography and authentication in body area networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1070–1078.CrossRefGoogle Scholar
  20. 20.
    Xiong, N., Vasilakos, A., Yang, L., Song, L., Pan, Y., Kannan, R., et al. (2009). Comparative analysis of quality of service and memory usage for adaptive failure detectors in healthcare systems. IEEE Journal on Selected Areas in Communications, 27(4), 495–509.CrossRefGoogle Scholar
  21. 21.
    Hayajneh, T., Almashaqbeh, G., Ullah, S., & Vasilakos, A.V. A survey of wireless technologies coexistence in WBAN: Analysis and open research issues. doi: 10.1007/s11276-014-0736-8.
  22. 22.
    Acampora, G., et al. (2013). A survey on ambient intelligence in healthcare. Proceedings of the IEEE, 101(12), 2470–2494.CrossRefGoogle Scholar
  23. 23.
    Zhou, J., et al. (2013). Securing m-healthcare social networks: Challenges, countermeasures and future directions. IEEE Wireless Communication, 20(4), 12–21.CrossRefGoogle Scholar
  24. 24.
    He, Daojing, et al. (2012). ReTrust: Attack-resistant and lightweight trust management for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(4), 623–632.CrossRefGoogle Scholar
  25. 25.
    He, Daojing, et al. (2012). A distributed trust evaluation model and its application scenarios for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1164–1175.CrossRefGoogle Scholar
  26. 26.
    Xiong, N., et al. (2009). Comparative analysis of quality of service and memory usage for adaptive failure detectors in healthcare systems. IEEE Journal on Selected Areas in Communications, 27(4), 495–509.CrossRefGoogle Scholar
  27. 27.
    Fortino, G., Di Fatta, G., Pathan, M., & Vasilakos, A. V. (2014). Cloud-assisted body area networks: State-of-the-art and future challenges. Wireless Networks, 20(7), 1925–1938.CrossRefGoogle Scholar
  28. 28.
    Hayajneh, T., Al-Mashaqbeh, G. A., Ullah, S., & Vasilakos, A. V. (2014). A survey of wireless technologies coexistence in WBAN: Analysis and open research issues. Wireless Networks, 20(8), 2165–2199.CrossRefGoogle Scholar
  29. 29.
    Zhang, Z., et al. (2012). ECG-cryptography and authentication in body area networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1070–1078.CrossRefGoogle Scholar
  30. 30.
    Phunchongharn, P., & Sergio Camorlinga, E. H. (2011). Electromagnetic interference-aware transmission scheduling and power control for dynamic wireless access in hospital environments. IEEE Transactions on Information Technology in Biomedicine, 15(6), 890–899.CrossRefGoogle Scholar
  31. 31.
    Phunchongharn, P., Niyato, D., Hossain, E., & Camorlinga, S. (2011). Robust transmission scheduling and power control for dynamic wireless access in a hospital environment. IEEE International Conference on Communications (ICC), 1–5.Google Scholar
  32. 32.
    Phunchongharn, P., Niyato, D., Hossain, E., & Camorlinga, S. (2001). Robust transmission scheduling and power control for dynamic wireless access in a hospital environment, IEEE International Conference on Communications (ICC), 1–5.Google Scholar
  33. 33.
    Wilk, S. Z., Michalowski, W., Michalowski, M., Farion, K., & Mainegra-Hing, M. (2013). Mitigation of adverse interactions in pairs of clinical practice guidelines using constraint logic programming. Journal of Biomedical Informatics, 46(2), 341–353.CrossRefGoogle Scholar
  34. 34.
    Arpah, S., Ahmad, B., Taib, M.N., Khalid, N.E.A., & Taib, H. (2012). Analysis of image quality based on dentists’ perception cognitive analysis and statistical measurements of intra-oral dental radiograph. In International Conference on Biomedical Engineering, pp. 379–384.Google Scholar
  35. 35.
    Istepanian, R. S. H., Philip, N., Martini, M. G., Amso, N., & Shorvon, P. (2008). Subjective and objective quality assessment in wireless teleultrasonography imaging. In 30th annual international conference of the IEEE engineering in medicine and biology society.Google Scholar
  36. 36.
    Vidhya, K., & Shenbagadevi, S. (2009). Performance analysis of medical image compression. In International Conference on Signal Processing Systems.Google Scholar
  37. 37.
    Ghrare, S.E., Ali, M.A.M., Ismail, M., & Jumari, K. (2008). Diagnostic quality of compressed medical images: Objective and subjective evaluation. In Second Asia international conference on modeling and simulation.Google Scholar
  38. 38.
    Finn, S., Glavin, M., & Jones, E. (2011). Echocardiographic speckle reduction comparison. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(1), 82–101.CrossRefGoogle Scholar
  39. 39.
    Nakajima, I., Nakada, K., Tomioka, Y., Juzoji, H., & Kitano, T. (2010). Methods for performing video quality evaluations in the field of medicine. In IEEE Region 10 Conference TENCON.Google Scholar
  40. 40.
    Cosman, P. C., Gray, R. M., & Olshen, R. A. (1994). Evaluating quality of compressed medical images: SNR. Subjective Rating and Diagnostic Accuracy, Proceedings of the IEEE, 82(6), 919–932.Google Scholar
  41. 41.
    Pesce, L. L., Metz, C. E., & Doi, K. (2009). Experimental design and data analysis in receiver operating characteristic studies: Lessons learned from reports in Radiology from 1997 to 2006. Radiology, 253(3), 822–830.CrossRefGoogle Scholar
  42. 42.
    Kim, B., Lee, K. H., Kim, K. J., Mantiuk, R., Kim, H. R., & Kim, Y. H. (2008). Artifacts in slab average-intensity-projection images reformatted from JPEG 2000 compressed thin-section abdominal CT Data sets. American Journal of Roentgenology, 190(6), 342–350.CrossRefGoogle Scholar
  43. 43.
    Duraisamy, P., Yuan, X., Saba, A. E., & Palanisamy, S. (2012). Contrast enhancement and assessment of OCT images. In International conference on informatics, electronics and vision, pp. 91–95.Google Scholar
  44. 44.
    Kumar, B., Singh, S.P., Mohan, A., & Singh, H. V. (2009). MOS prediction of SPIHT medical images using objective quality parameters. In International conference on signal processing systems.Google Scholar
  45. 45.
    Panayides, A., Pattichis, M. S., Pattichis, C. S., Loizou, C. C., Pantziaris, M., & Pitsillides, A. (2009). Atherosclerotic plaque ultrasound video encoding, wireless transmission, and quality assessment using H.264. IEEE Transactions on Information Technology in Biomedicine, 15(3), 387–397.CrossRefGoogle Scholar
  46. 46.
    Przelaskowski, A. (2004). Vector quality measure of lossy compressed medical images. Computers in Biology and Medicine, 34(3), 193–207.CrossRefGoogle Scholar
  47. 47.
    Pambrun, J.F., & Noumeir, R. (2011). Perceptual quantitative quality assessment of JPEG2000 compressed ct images with various slice thicknesses. In IEEE International Conference on Multimedia and Expo (ICME).Google Scholar
  48. 48.
    Kim, K. J., Lee, K. H., Kang, H. S., Kim, S. Y., Kim, Y. H., Kim, B., et al. (2009). Objective metric of image fidelity for JPEG2000 compressed body CT Images. Medical Physics, 36(7), 3218–3226.CrossRefGoogle Scholar
  49. 49.
    Lin, D., Labeau, F., & Wu, X. Quality metric of medical images for multiple diagnosis purposes, Submitted.Google Scholar
  50. 50.
    Tan, K.-S., & Hinberg, I. (1994). Radiofrequency susceptibility tests on medical equipment. IEEE 16th Annual International Conference, 2, 998–999.Google Scholar
  51. 51.
    Electromagnetic compatibility of medical devices with mobile communications. (1997). In Medical devices bulletin DB9702. London: Medical Devices Agency.Google Scholar
  52. 52.
    Trigano, A. J., Azoulay, A., Rochdi, M., & Campillo, A. (1999). Electromagnetic interference of external pacemakers by walkie-talkies and digital cellular phones: Experimental study. Pacing and Clinical Electrophysiology, 22(4), 588–593.CrossRefGoogle Scholar
  53. 53.
    Calcagnini, G., Bartolini, P., Floris, M., Triventi, M., Cianfanelli, P., Scavino, G., et al. (2004). Electromagnetic interference to infusion pumps from GSM mobile phones. IEEE 26th Annual International Conference, 2, 3515–3518.Google Scholar
  54. 54.
    Chu, Y., & Ganz, A. (2004). A mobile teletrauma system using 3G networks. IEEE Transactions on Information Technology in Biomedicine, 8(4), 456–462.CrossRefGoogle Scholar
  55. 55.
    Navarro, E. A. V., Mas, J. R., Navajas, J. F., & Alcega, C. P. (2006). Performance of a 3G-based mobile telemedicine system. Proceedings of the 3rd IEEE Consumer Communications and Networking Conference, 2, 1023–1027.Google Scholar
  56. 56.
    E-Health Insider. (2007). DH to lift hospital mobile phone ban. http://www.e-health-insider.com/news/item.cfm?ID=2542.
  57. 57.
    Chi-Kit, T., & Kwok-Hung, C. (2009). Electromagnetic interference immunity testing of medical equipment to second- and third-generation mobile phones. IEEE Transactions on Electromagnetic Compatibility, 51(3), 659–664.CrossRefGoogle Scholar
  58. 58.
    Ardavan, M., & Schmitt, K. (2010). A preliminary assessment of EMI control policies in hospitals. In 14th international symposium on antenna technology and applied electromagnetics and the American electromagnetics conference.Google Scholar
  59. 59.
    Krishnamoorthy, S., & Reed, J.H. (2003). Characterization of the 2.4 GHz ISM band electromagnetic interference in a hospital environment. In Proceedings of the 25th IEEE annual international, pp. 3245–3248.Google Scholar
  60. 60.
    Witters, D., & Seidman, S. (2010). EMC and wireless healthcare. In Asia-Pacific symposium on electromagnetic compatibility.Google Scholar
  61. 61.
    Phunchongharn, P., Ekram Hossain, D. N., & Camorlinga, S. (2010). An EMI-aware prioritized wireless access scheme for e-health applications in hospital environments. IEEE Transactions on Information Technology in Biomedicine, 14(5), 1247–1258.CrossRefGoogle Scholar
  62. 62.
    Hanada, E., Watanabe, Y., Antoku, Y., Kenjo, Y., Nutahara, H., & Nose, Y. (1998). Hospital construction materials: Poor shielding capacity with respect to signals transmitted by mobile telephones. Biomedical Instrumentation & Technology, 32(5), 489–496.Google Scholar
  63. 63.
    Walker, E., & Zepernick, H.J. (1998). Fading measurements at 2.4 GHz for the indoor radio propagation channel. In International Zurich seminar on broadband communications.Google Scholar
  64. 64.
    Zepernick, H. J., & Wysocki, T. A. (1999). Multipath channel parameters for the indoor radio at 2.4 GHz ISM band. In IEEE vehicular technology conference.Google Scholar
  65. 65.
    Akl, R., Tummala, D., & Li, X. (2006). Indoor propagation modeling at 2.4 GHZ for IEEE 802.11 networks. In The sixth international multi-conference on wireless and optical communications networks and emerging technologies.Google Scholar
  66. 66.
    Hentila, L., Taparungssanagorn, A., Viittala, H., & Hamalainen, M. (2005). Measurement and modelling of an UWB channel at hospital. In IEEE international conference on ultra-wideBand (ICUWB).Google Scholar
  67. 67.
    Huang, L., De Fransisco, R., & Dolmans, G. (2009). Channel measurement and modeling in medical environments. In Third international symposium on medical information and communication technology.Google Scholar
  68. 68.
    Love, D. J., & Heath, R. W. (2008). An overview of limited feedback in wireless communication systems. IEEE Journal on Selected Areas in Communications, 26(8), 1341–1365.CrossRefGoogle Scholar
  69. 69.
    Ahmed, W. K. M., & McLane, P. J. (2000). Random coding error exponents for flat fading channels with realistic channel estimation. IEEE Journal on Selected Areas in Communications, 18(3), 369–379.CrossRefGoogle Scholar
  70. 70.
    Ekpenyong, A. E., & Huang, Y. F. (2007). Feedback constraints for adaptive transmission. IEEE Signal Processing Magazine, 24(3), 69–78.CrossRefGoogle Scholar
  71. 71.
    Eriksson, T., & Ottosson, T. (2007). Compression of feedback for adaptive transmission and scheduling. Proceedings of the IEEE, 95(12), 2314–2321.CrossRefGoogle Scholar
  72. 72.
    Ekpenyong, A. E., & Yih-Fang, H. (2006). Feedback-detection strategies for adaptive modulation systems. IEEE Transactions on Communications, 54(10), 1735–1740.CrossRefGoogle Scholar
  73. 73.
    Kuhn, M., Ettefagh, A., Hammerstrom, I., & Wittneben, A. (2006). Two-way com munication for IEEE 802.11n WLANs using decode and forward relays. In Fortieth Asilomar conference on signals, systems and computers.Google Scholar
  74. 74.
    Cartwright, H. M. (1995). The genetic algorithm in science. Pesticide Science, 45, 171C178. doi: 10.1002/ps.2780450212.CrossRefGoogle Scholar
  75. 75.
    Wan, Z., Xiong, N., Ghani, N., Vasilakos, A. V., & Zhou, L. (2014). Adaptive unequal protection for wireless video transmission over IEEE 802.11e networks. Multimedia Tools and Applications, 72(1), 541–571.CrossRefGoogle Scholar
  76. 76.
    Wei, W., & Zakhor, A. (2009). Interference aware multipath selection for video streaming in wireless ad hoc networks. IEEE Transactions on Circuits and Systems for Video Technology, 19(2), 165–178.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Di Lin
    • 1
    Email author
  • Fabrice Labeau
    • 2
  • Athanasios V. Vasilakos
    • 3
  1. 1.School of Information and Software EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada
  3. 3.Department of Computer and Telecommunications EngineeringUniversity of Western MacedoniaKozaniGreece

Personalised recommendations