Advertisement

Wireless Networks

, Volume 21, Issue 6, pp 1879–1889 | Cite as

Li-Fi: Light fidelity-a survey

  • Xu Bao
  • Guanding Yu
  • Jisheng Dai
  • Xiaorong Zhu
Article

Abstract

Visible light communication (VLC), which uses a vast unregulated and free light spectrum, has emerged to be a viable solution to overcome the spectrum crisis of radio frequency. Light fidelity (Li-Fi) is an optical networked communication in the subset of VLC to offload the mobile data traffics which offers many advantages at indoor scenario. In this article, we survey the key technologies for realizing Li-Fi and present the sate-of-the-art on each aspect, such as: indoor optical wireless channel model, the VLC modulation techniques with user satisfaction, OFDM in VLC, optical MIMO, optical spatial modulation, multiple user access, resource allocation, interference management and hybrid Li-Fi schemes. Some challenges and future work that need to be solved in the area are also described.

Keywords

Light fidelity (Li-Fi) Visible light communication (VLC) VLC modulation with user satisfaction Optical MIMO  Interference management Hybrid Li-Fi 

Notes

Acknowledgments

This work is supported by the Natural Science Foundation of Jiangsu Province under Grant Nos. BK20130530 and BK2012831, the Programs of Senior Talent Foundation of Jiangsu University under Grant No. 11JDG130, the National Natural Science Foundation of China under Grant Nos. 61372125 and 61102054, and Open Research Fund of National Mobile Communications Research Laboratory, Southeast University under Grant No. 2013D08.

References

  1. 1.
    Cisco Visual Networking Index. (Feb. 2013). Global mobile data traffic forecast update, 2012–2017. CISCO: White paper.Google Scholar
  2. 2.
    National Telecommunications and Information Admission(NTIA). (2003). FCC frequency allocation chart. Available http://www.Ntia.doc.gov/osmhome/allochrt
  3. 3.
    Kavehrad, M. (2010). Sustainable energy-efficient wireless applications using light. IEEE Communications Magazine, 48(12), 66–73.CrossRefGoogle Scholar
  4. 4.
    Visible Light Communications Consortium. http://www.vlcc.net/
  5. 5.
    Home Gigabit Access (OMEGA). http://www.ict-omega.eu/
  6. 6.
    IEEE 802.15 WPAN Task Group 7 (TG7) Visible Light Communication. http://www.ieee802.org/15/pub/TG7.html
  7. 7.
  8. 8.
    OBrien, D., Minh, H. L., Zeng, L., Faulkner, G., Lee, K., Jung, D., et al. (2008). Indoor visible light communications: Challenges and prospects. Proceedings of SPIE Free-Space Laser Communications VIII, 7091, 1–9.Google Scholar
  9. 9.
    Jungnickel, V., Pohl, V., Noenning, S., & von Helmolt, C. (2002). A physical model for the wireless infrared communication channel. IEEE Journal on Selected Areas in Communications, 20(3), 631–640.CrossRefGoogle Scholar
  10. 10.
    Fath, T., & Haas, H. (2013). Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Transactions on Communication, 61(2), 733–742.CrossRefGoogle Scholar
  11. 11.
    Wilkins, A., Veitch, J., & Lehman, B. (2010). LED lighting flicker and potential health concerns: IEEE standard PAR1789 update. In Proceedings of IEEE energy conversations congress expo, Atlanta, GA, USA (pp. 171–178).Google Scholar
  12. 12.
    Dyble, M., Narendran, N., Bierman, A., & Klein, T. (2005). Impact of dimming white LEDs: Chromaticity shifts due to different dimming methods. In Proceedings of SPIE, 5941, 59411H1–9.Google Scholar
  13. 13.
    Audeh, M., & Kahn, J. (1994). Performance evaluation of L-pulse-position modulation on non-directed indoor infrared channels. In Proceedings of IEEE international conference on communication, Vol. 4. New Orleans, LA, USA, pp. 660–664.Google Scholar
  14. 14.
    Doshi, M., & Zane, R. (2010). Control of solid-state lamps using a multiphase pulsewidth modulation technique. IEEE Transactions on Power Electronics, 25(7), 1894–1904.CrossRefGoogle Scholar
  15. 15.
    Lee, K., & Park, H. (2011). Modulations for visible light communications with dimming control. IEEE Photonics Technology Letters, 23(16), 1136–1138.CrossRefGoogle Scholar
  16. 16.
    Suh, Y., Ahn, C. H., & Kwon, J. K. (2013). Dual-codeword allocation scheme for dimmable visible light communications. IEEE Photonics Technology Letters, 25(13), 1274–1277.CrossRefGoogle Scholar
  17. 17.
    Lee, S. H., & Kwon, J. K. (2012). Turbo code-based error correction scheme for dimmable visible light communication systems. IEEE Photonics Technology Letters, 24(17), 1463–1465.CrossRefGoogle Scholar
  18. 18.
    Kim, J., & Park, H. (2014). A coding scheme for visible light communication with wide dimming range. IEEE Photonics Technology Letters, 26(5), 465–468.CrossRefGoogle Scholar
  19. 19.
    Wjm, V. B., & Gj, V. V. B. (2004). Lighting for work: A review of visual and biological effects. Lighting Research and Technology, 36, 255–269.CrossRefGoogle Scholar
  20. 20.
    Park, J. Y., Ha, R.-Y., Ryu, V., Kim, E., & Jung, Y.-C. (2013). Effects of color temperature and brightness on electroencephalogram alpha activity in a polychromatic light-emitting diode. Clinical Psychopharmacology and Neuroscience, 11, 126–131.CrossRefGoogle Scholar
  21. 21.
    Ahn, K.-I., & Kwon, J. K. (2012). Color intensity modulation for multicolored visible light communications. IEEE Photonics Technology Letters, 24(24), 2254–2257.CrossRefGoogle Scholar
  22. 22.
    Monteiro, E., & Hranilovic, S. (2014). Design and implementation of color-shift keying for visible light communications. Journal of Lightwave Technology, 30(10), 2053–2060.CrossRefGoogle Scholar
  23. 23.
    Singh, R., O’Farrell, T., & David, J. P. R. (2014). An enhanced color shift keying modulation scheme for high-speed wireless visible light communications. Journal of Lightwave Technology, 32(14), 2582–2592.CrossRefGoogle Scholar
  24. 24.
    Butala, P. M., Chau, J. C., & Little, T. D. C. (2012). Metameric modulation for diffuse visible light communications with constant ambient lighting. In International workshop on optical wireless communications (IWOW), pp. 1–3.Google Scholar
  25. 25.
    CIE (1931). Commission Internationale de lEclairage proceedings, Cambridge University Press.Google Scholar
  26. 26.
    IEEE Standard for Local and Metropolitan Area Networks-Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Standard 802.15.7-2011, pp. 1–309, (Jun. 2011).Google Scholar
  27. 27.
    Rajagopal, S., Roberts, R. D., & Lim, S. K. (2012). IEEE 802.15.7 visible light communication: Modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72–82.CrossRefGoogle Scholar
  28. 28.
    Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of IEEE, 85, 265–298.CrossRefGoogle Scholar
  29. 29.
    Armstrong, J., & Lowery, A. J. (2006). Power efficient optical OFDM. Electronic Letters, 42(6), 370–372.CrossRefGoogle Scholar
  30. 30.
    Dissanayake, S. D., & Armstrong, J. (2013). Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems. Journal of Lightwave Technology, 31(7), 1063–1072.CrossRefGoogle Scholar
  31. 31.
    Wang, T. Q., Sekercioglu, Y. A., & Armstrong, J. (2013). Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications. Journal of Lightwave Technology, 31(11), 1744–1754.CrossRefGoogle Scholar
  32. 32.
    Zeng, L. B., O’Brien, D. C., Le Minh, H., Faulkner, G. E., Lee, K., Jung, D., et al. (2009). High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE Journal on Selected Areas in Communications, 27(9), 1654–1662.CrossRefGoogle Scholar
  33. 33.
    Mesleh, R., Elgala, H., & Haas, H. (2011). Optical spatial modulation. Journal of Optical Communications Network, 3(3), 234–244.CrossRefGoogle Scholar
  34. 34.
    Zhang, X., Dimitrov, S., Sinanovic, S., & Haas, H. (2012). Optimal power allocation in spatial modulation OFDM for visible light communications. In 2012 IEEE 75th vehicular technology conference, New York.Google Scholar
  35. 35.
    Stefan, I., Burchardt, H., & Haas, H. (2013). Area spectral efficiency performance comparison between VLC and RF femtocell networks. In 2013 IEEE international conference on communications (ICC), pp. 3825–3829.Google Scholar
  36. 36.
    Huang, Z. T., & Ji, Y. F. (2012). Efficient user access and lamp selection in LED-based visible light communication network. Chinese Optics Letters, 10(5), 050602(1–5).MathSciNetGoogle Scholar
  37. 37.
    Bykhovsky, D., & Arnon, S. (2014). Multiple access resource allocation in visible light communication systems. Journal of Lightwave Technology, 32(8), 1594–1600.CrossRefGoogle Scholar
  38. 38.
    Dang, J., & Zhang, Z. C. (2012). Comparison of optical OFDM-IDMA and optical OFDMA for uplink visible light communications. In 2012 International conference on wireless communications and signal processing (WCSP 2012).Google Scholar
  39. 39.
    Guerra-Medina, M. F., Gonzalez, O., Rojas-Guillama, B., Martin-Gonzalez, J. A., Delgado, F., & Rabadan, J. (2012). Ethernet-OCDMA system for multi-user visible light communications. Electronic Letters, 48(4), 227–U170.CrossRefGoogle Scholar
  40. 40.
    Noshad, M., & Brandt-Pearce, M. (2014). Application of expurgated PPM to indoor visible light communications-part II: Access networks. Journal of Lightwave Technology, 32(5), 883–890.CrossRefGoogle Scholar
  41. 41.
    Djordjevic, I., & Vasic, B. (2004). Combinatorial constructions of optical orthogonal codes for OCDMA systems. IEEE Communications Letters, 8(6), 391–393.CrossRefGoogle Scholar
  42. 42.
    Camtepe, S. A., & Yener, B. (2007). Combinatorial design of key distribution mechanisms for wireless sensor networks. IEEE/ACM Transactions on Networking, 15(2), 346–358.CrossRefGoogle Scholar
  43. 43.
    Vasic, B., & Djordjevic, I. (2002). Low-density parity check codes for long-haul optical communication systems. IEEE Photonics Technology Letters, 14(8), 1208–1210.CrossRefGoogle Scholar
  44. 44.
    Noshad, M., & Brandt-Pearce, M. (2011). NLOS UV communication systems using spectral amplitude coding. In Proceedings of 2011 IEEE GLOBECOM Workshops, pp. 843–848.Google Scholar
  45. 45.
    Chung, F., Salehi, J. A., & Wei, V. K. (1989). Optical orthogonal codes: Design, analysis and applications. IEEE Transactions on Information Theory, 35(3), 595–604.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Kim, S. M., & Kim, S. M. (2013). Wireless visible light communication technology using optical beamforming. Optics Engineering, 52(10), 1–6.Google Scholar
  47. 47.
    Remenyi, J., Varhegyi, P., Domjan, L., Koppa, P., & Lorincz, E. (2003). Amplitude, phase, and hybrid ternary modulation modes of a twisted-nematic liquid-crystal display at 400 nm. Applied Optics, 42(17), 3428–3434.CrossRefGoogle Scholar
  48. 48.
    Cui, K. Y., Quan, J. G., & Xu, Z. Y. (2013). Performance of indoor optical femtocell by visible light communication. Optics Communications, 298, 59–66.CrossRefGoogle Scholar
  49. 49.
    Chen, C., Serafimovski, N., & Haas, H. (2013). Fractional frequency reuse in optical wireless cellular networks. In IEEE 24th international symposium on personal indoor and mobile radio communications (PIMRC), pp. 3594–3598.Google Scholar
  50. 50.
    Ghimire, B., & Haas, H. (2012). Self-organising interference coordination in optical wireless networks. Eurasip Journal on Wireless Communications and Networking, 131, 1–15.Google Scholar
  51. 51.
    Rahaim, M. B., Vegni, A. M., & Little, T. D. C. (2011). A hybrid radio frequency and broadcast visible light communication system. In Proceedings of IEEE GLOBECOM, pp. 792–796.Google Scholar
  52. 52.
    Chowdhury, H., & Katz, M. (2014). Cooperative data download on the move in indoor hybrid (radio-optical) WLAN-VLC hotspot coverage. Transactions on Emerging Telecommunications Technologies, 25(6), 666–677.CrossRefGoogle Scholar
  53. 53.
    Huang, Z. T., & Ji, Y. F. (2013). Design and demonstration of room division multiplexing-based hybrid VLC network. Chinese Optics Letters, 11(6), 1–5.MathSciNetGoogle Scholar
  54. 54.
    Hou, J. D., & OBrien, D. C. (2006). Vertical handover decision-making algo-rithm using fuzzy logic for the integrated radio-and-OW system. IEEE Transactions on Wireless Communications, 5(1), 176–185.CrossRefGoogle Scholar
  55. 55.
    Nguyen, T., Chowdhury, M. Z., & Jang, Y. M. (2013). A novel link switching scheme using pre-scanning and RSS prediction in visible light communication networks. Eurasip Journal on Wireless Communications and Networking, 293, 1–17.Google Scholar
  56. 56.
    Vegni, A. M., & Little, T. D. C. (2012). Handover in VLC systems with cooperating mobile devices. In 2012 International conference on computing, networking and communications (ICNC), pp. 126–130.Google Scholar
  57. 57.
    Bao, X., Zhu, X., Song, T., & Ou, Y. (2014). Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems. IEEE Transactions on Vehicular Technology, 63(4), 1770–1778.CrossRefGoogle Scholar
  58. 58.
    Tsiatmas, A., Baggen, C. P. M. J., Willems, F. M. J., Linnartz, J. P. M. G., & Bergmans, J. W. M. (2014). An illumination perspective on visible light communications. IEEE Communications Magazine, 52(7), 64–71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xu Bao
    • 1
  • Guanding Yu
    • 2
  • Jisheng Dai
    • 3
    • 4
  • Xiaorong Zhu
    • 5
  1. 1.School of Computer and Communications EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Institute of Information and Communication EngineeringZhejiang UniversityHangzhouChina
  3. 3.School of Electrical and Information EngineeringJiangsu UniversityZhenjiangChina
  4. 4.National Mobile Communications Research LaboratorySoutheast UniversityNanjingChina
  5. 5.Wireless Communication Key Laboratory of Jiangsu ProvinceNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations