Wireless Networks

, Volume 21, Issue 3, pp 809–827 | Cite as

Impact of static trajectories on localization in wireless sensor networks

  • Javad Rezazadeh
  • Marjan Moradi
  • Abdul Samad Ismail
  • Eryk Dutkiewicz


A Wireless Sensor Network (WSN) consists of many sensors that communicate wirelessly to monitor a physical region. Location information is critical essential and indispensable for many applications of WSNs. A promising solution for localizing statically deployed sensors is to benefit from mobile location-aware nodes called beacons. However, the essential problem is to find the optimum path that the mobile beacon should travel in order to improve localization accuracy, time and success as well as energy efficiency. In this paper, we evaluate the performance of five mobile beacon trajectories; Random Way Point, Scan, Hilbert, Circles and Localization algorithm with a Mobile Anchor node based on Trilateration (LMAT) based on three different localization techniques such as Weighted Centroid Localization and trilateration with time priority and accuracy priority. This evaluation aims to find effective and essential properties that the trajectory should have. Our simulations show that a random movement cannot guarantee the performance of localization. The results also show the efficiency of LMAT regarding accuracy, success and collinearity while the Hilbert space filling curve has lower energy consumption. Circles path planning can help to localize unknown sensors faster than others at the expense of lower localization precision.


Localization Trajectory Mobile beacon 


  1. 1.
    Abolhasan, M., Wysocki, T., & Dutkiewicz, E. (2004). A review of routing protocols for mobile ad hoc networks. Ad Hoc Networks, 2, 1–22.CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRefGoogle Scholar
  3. 3.
    Baggio, A., & Langendoen, K. (2008). Monte carlo localization for mobile wireless sensor networks. Ad Hoc Networks, 6, 718–733.CrossRefGoogle Scholar
  4. 4.
    Bahi, J. M., Makhoul, A., & Mostefaoui, A. (2008a). Hilbert mobile beacon for localisation and coverage in sensor networks. International Journal of Systems Science, 39, 1081–1094.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bahi, J. M., Makhoul, A., & Mostefaoui, A. (2008b). Localization and coverage for high density sensor networks. Computer Communications, 31, 770–781.CrossRefGoogle Scholar
  6. 6.
    Bahl, P., & Padmanabhan, V. N. (2000). RADAR: An in-building RF-based user location and tracking system. In INFOCOM, IEEE, Vol. 2, pp. 775–784.Google Scholar
  7. 7.
    Blumenthal, J., Grossmann, R., Golatowski, F., & Timmermann, D. (2007). Weighted centroid localization in zigbee-based sensor networks. In IEEE international symposium on intelligent signal processing, WISP 2007, pp. 1–6.Google Scholar
  8. 8.
    Bulusu, N., Heidemann, J., & Estrin, D. (2000). Gps-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7, 28–34.CrossRefGoogle Scholar
  9. 9.
    Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless communications and mobile computing (WCMC): special issue on mobile ad hoc networking:research, trends and applications, Vol. 2, pp. 483–502.Google Scholar
  10. 10.
    Chang, C. T., Chang, C. Y., & Lin, C. Y. (2012). Anchor-guiding mechanism for beacon-assisted localization in wireless sensor networks. IEEE Sensors Journal, 12, 1098–1111.CrossRefGoogle Scholar
  11. 11.
    Chen, H., Shi, Q., Tan, R., Poor, H., & Sezaki, K. (2010). Mobile element assisted cooperative localization for wireless sensor networks with obstacles. IEEE Transactions on Wireless Communications, 9, 956–963.CrossRefGoogle Scholar
  12. 12.
    Chipcon (2010) CC1000 low power radio transceiver.
  13. 13.
    Dutkiewicz, E. (2001). Impact of transmit range on throughput performance in mobile ad hoc networks. In IEEE international conference on communications, ICC 2001, Vol. 9, pp. 2933–2937.Google Scholar
  14. 14.
    Galstyan, A., Krishnamachari, B., Lerman, K., & Pattem, S. (2004). Distributed online localization in sensor networks using a moving target. In ACM Ipsn, pp. 61–70.Google Scholar
  15. 15.
    Han, G., Choi, D., & Lim, W. (2009). Reference node placement and selection algorithm based on trilateration for indoor sensor networks. Wireless Communications and Mobile Computing, 9, 1017–1027.CrossRefGoogle Scholar
  16. 16.
    Han, G., Xu, H., Duong, T., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: A survey. Telecommunication Systems, 52, 2419–2436.Google Scholar
  17. 17.
    Han, G., Xu, H., Jiang, J., Shu, L., Hara, T., & Nishio, S. (2011). Path planning using a mobile anchor node based on trilateration in wireless sensor networks. Wireless Communications and Mobile Computing13, 1324–1336.Google Scholar
  18. 18.
    Han, K., Luo, J., Liu, Y., & Vasilakos, A. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.CrossRefGoogle Scholar
  19. 19.
    Han, S., Lee, S., Lee, S., Park, J., & Park, S. (2010). Node distribution-based localization for large-scale wireless sensor networks. Wireless Networks, 16(5), 1389–1406.CrossRefGoogle Scholar
  20. 20.
    He, T., Huang, C., Blum, BM., Stankovic, JA., & Abdelzaher, T. (2003). Range-free localization schemes for large scale sensor networks. In ACM MobiCom, pp. 81–95.Google Scholar
  21. 21.
    Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (1997). Global positioning system: Theory and practice. Berlin: Springer.Google Scholar
  22. 22.
    Hu, L., & Evans, D. (2004). Localization for mobile sensor networks. In ACM MobiCom, pp. 45–57.Google Scholar
  23. 23.
    Hu, Z., Gu, D., Song, Z., & Li, H. (2008). Localization in wireless sensor networks using a mobile anchor node. In Advanced intelligent mechatronics, AIM/IEEE, pp. 602–607.Google Scholar
  24. 24.
    Huang, R., & Zaruba, G. (2007). Static path planning for mobile beacons to localize sensor networks. In Pervasive computing and communications workshops, 2007. PerCom, pp. 323–330.Google Scholar
  25. 25.
    Huang, R., & Zruba, G. (2009). Monte carlo localization of wireless sensor networks with a single mobile beacon. Wireless Networks, 15(8), 978–990.CrossRefGoogle Scholar
  26. 26.
    Kim, K., Jung, B., Lee, W., & Du, D. Z. (2011). Adaptive path planning for randomly deployed wireless sensor networks. Journal of Information Science and Engineering, 27, 1091–1106.Google Scholar
  27. 27.
    Koutsonikolas, D., Das, S. M., & Hu, Y. C. (2007). Path planning of mobile landmarks for localization in wireless sensor networks. Computter Communication, 30, 2577–2592.CrossRefGoogle Scholar
  28. 28.
    Kumar, S., & Lobiyal, D. (2014). Power efficient range-free localization algorithm for wireless sensor networks. Wireless Networks, 20(4), 681–694.CrossRefGoogle Scholar
  29. 29.
    Lee, S., Kim, E., Kim, C., & Kim, K. (2009). Localization with a mobile beacon based on geometric constraints in wireless sensor networks. IEEE Transactions on Wireless Communications, 8, 5801–5805.CrossRefGoogle Scholar
  30. 30.
    Li, H., Wang, J., Li, X., & Ma, H. (2008). Real-time path planning of mobile anchor node in localization for wireless sensor networks. In Information and automation ICIA 2008, pp. 384–389.Google Scholar
  31. 31.
    Li, M., Li, Z., & Vasilakos, A. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.CrossRefGoogle Scholar
  32. 32.
    Li, X., Mitton, N., Simplot-Ryl, I., & Simplot-Ryl, D. (2012). Dynamic beacon mobility scheduling for sensor localization. IEEE Transactions on Parallel and Distributed Systems, 23, 1439–1452.CrossRefGoogle Scholar
  33. 33.
    Lin, J. W., & Chen, Y. T. (2008). Improving the coverage of randomized scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 7, 4807–4812.CrossRefGoogle Scholar
  34. 34.
    Mao, G., Fidan, B., & Anderson, B. D. O. (2007). wireless sensor network localization techniques. Computer Networks, 51, 2529–2553.CrossRefzbMATHGoogle Scholar
  35. 35.
    Moradi, M., Rezazadeh, J., & Ismail, A. S. (2012). A reverse localization scheme for underwater acoustic sensor networks. Sensors, 12, 4352–4380.CrossRefGoogle Scholar
  36. 36.
    Niculescu, D., & Nath, B. (2003a). Ad hoc positioning system (aps) using aoa. In INFOCOM. IEEE, Vol. 3, pp. 1734–1743.Google Scholar
  37. 37.
    Niculescu, D., & Nath, B. (2003b). DV based positioning in ad hoc networks. Telecommunication Systems, 22, 267–280.CrossRefGoogle Scholar
  38. 38.
    Ou, C., & He, W. (2013). Path planning algorithm for mobile anchor based localization in wireless sensor networks. Sensors Journal IEEE, 13, 466–475.Google Scholar
  39. 39.
    Patwari, N., Hero, A., Perkins, M., Correal, N., & O’Dea, R. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51, 2137–2148.CrossRefGoogle Scholar
  40. 40.
    Patwari, N., Ash, J., Kyperountas, S., Hero, I. A. O., Moses, R., & Correal, N. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. Signal Processing Magazine IEEE, 22, 54–69.CrossRefGoogle Scholar
  41. 41.
    Perrig, A., Szewczyk, R., Tygar, J., Wen, V., & Culler, D. (2002). Spins: Security protocols for sensor networks. Wireless Networks, 8(5), 521–534.CrossRefzbMATHGoogle Scholar
  42. 42.
    Priyantha, NB., Chakraborty, A., & Balakrishnan, H. (2000). The cricket location-support system. In ACM MobiCom, pp. 32–43.Google Scholar
  43. 43.
    Priyantha, NB., Balakrishnan, H., Demaine, ED., & Teller, S. (2005). Mobile-assisted localization in wireless sensor networks. In INFOCOM, IEEE, pp. 172–183.Google Scholar
  44. 44.
    Rappaport, T. (2001). Wireless communications: Principles and practice, 2nd edn. Prentice Hall PTR.Google Scholar
  45. 45.
    Rezazadeh, J., Moradi, M., & Ismail, AS. (2011) Efficient localization via middle-node cooperation in wireless sensor networks. In International conference on electrical, control and computer engineering (INECCE), 2011, pp. 410–415.Google Scholar
  46. 46.
    Rezazadeh, J., Moradi, M., & Ismail, A. S. (2012a). Fundamental metrics for wireless sensor networks localization. International Journal of Electrical and Computer Engineering (IJECE), 2(4), 452–455.CrossRefGoogle Scholar
  47. 47.
    Rezazadeh, J., Moradi, M., & Ismail, A. S. (2012b). Message-efficient localization in mobile wireless sensor networks. Journal of Communication and Computer (JCC), 9(3), 340–344.Google Scholar
  48. 48.
    Rezazadeh, J., Moradi, M., & Ismail, A. S. (2012c). Mobile wireless sensor networks overview. International Journal of Computer Communications and Networks, 2(1), 17–22.Google Scholar
  49. 49.
    Savarese, C., & Rabaey, JM. (2001). Locationing in distributed ad-hoc wireless sensor networks. In In ICASSP, pp. 2037–2040.Google Scholar
  50. 50.
    Savvides, A., Han, CC., & Strivastava, MB. (2001). Dynamic fine-grained localization in ad-hoc networks of sensors. In ACM MobiCom, pp. 166–179.Google Scholar
  51. 51.
    Shang, Y., Ruml, W., Zhang, Y., & Fromherz, M. P. J. (2003). Localization from mere connectivity. In ACM MobiHoc, pp. 201–212.Google Scholar
  52. 52.
    Shee, S. H., Wang, K., & ling Hsieh Y,. (2005). Color-theory-based dynamic localization in mobile wireless sensor networks. In Proceedings of workshop on wireless (pp. 73–78). Sensor Networks: Ad Hoc.Google Scholar
  53. 53.
    Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., McCann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications IEEE, 20(6), 91–98.CrossRefGoogle Scholar
  54. 54.
    Sichitiu, M., & Ramadurai, V. (2004). Localization of wireless sensor networks with a mobile beacon. In: IEEE international conference on mobile ad-hoc and sensor systems, MAHSS, pp. 174–183.Google Scholar
  55. 55.
    Ssu, K. F., Ou, C. H., & Jiau, H. (2005). Localization with mobile anchor points in wireless sensor networks. IEEE Transactions on Vehicular Technology, 54, 1187–1197.CrossRefGoogle Scholar
  56. 56.
    Vasilakos, A., Zhang, Y., & Spyropoulos, T. (2012). Delay tolerant networks: Protocols and applications. Wireless networks and mobile communications. London: Taylor & Francis.Google Scholar
  57. 57.
    Wang, H., Qi, W., Wang, K., Liu, P., Wei, L., & Zhu, Y. (2011). Mobile-assisted localization by stitching in wireless sensor networks. In ICC, IEEE, pp. 1–5.Google Scholar
  58. 58.
    Wang, W., & Zhu, Q. (2009). Sequential monte carlo localization in mobile sensor networks. Wireless Networks, 15(4), 481–495.CrossRefGoogle Scholar
  59. 59.
    Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In Proceedings of the 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON), 2011 , pp. 46–54.Google Scholar
  60. 60.
    Xiao, Y., Peng, M., Gibson, J., Xie, G., Du, D. Z., & Vasilakos, A. (2012). Tight performance bounds of multihop fair access for mac protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.CrossRefGoogle Scholar
  61. 61.
    Yao, Y., Cao, Q., & Vasilakos, A. (2014). Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. In IEEE/ACM transactions on networking, Vol. 99, pp. 1–1.Google Scholar
  62. 62.
    Zamalloa, MZn., & Krishnamachari, B. (2007). An analysis of unreliability and asymmetry in low-power wireless links. ACM Transactions on Sensor Networks, 3, 1–34.Google Scholar
  63. 63.
    Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks (10220038), 19(2), 161–173.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Javad Rezazadeh
    • 1
  • Marjan Moradi
    • 1
  • Abdul Samad Ismail
    • 1
  • Eryk Dutkiewicz
    • 2
  1. 1.Department of Computer Science, Faculty of ComputingUniversiti Teknologi Malaysia (UTM)JohorMalaysia
  2. 2.Macquarie UniversitySydneyAustralia

Personalised recommendations