Advertisement

Wireless Networks

, Volume 21, Issue 1, pp 81–94 | Cite as

Optimum design of a banked memory with power management for wireless sensor networks

  • Leonardo SteinfeldEmail author
  • Marcus Ritt
  • Fernando Silveira
  • Luigi Carro
Article

Abstract

The ever-increasing complexity of applications covered by wireless sensor networks (WSNs) demands for increasing memory size, which in turn increases the power drain. It is well known that SRAM power consumption can be reduced by employing a banked structure, where unused banks are switched into the low leakage retention mode. Although several power management strategies and algorithms for allocating the memory contents to the banks have been proposed, the energy savings limits of these techniques were not completely explored. In this work, we propose a new strategy for memory banking, taking advantage of the software properties intrinsic to WSN, and achieve aggressive power savings. We present a detailed model of the energy saving for uniform banks with two power management schemes: a best-oracle policy and a simple greedy policy. The model gives valuable insight into key factors (coming from the application, the technology, and design decisions) that are critical for reaching the maximum achievable energy saving. Using our model the optimum number of banks can be estimated at design time to reach more aggressive energy savings. The memory content allocation and the power management problem were solved by an integer linear program formulation for two real wireless sensor network applications (based on TinyOS and ContikiOS). Experimental results show memory energy reduction up to 78.3 % for a partition overhead of 1 %, representing an overall energy saving close to 19 % in data collection WSN applications, including the communication energy and sleep power. The saving would increase to 34 % in more intensive processing applications.

Keywords

Wireless sensor network Banked memory Power management SRAM memory Event-driven software 

Notes

Acknowledgment

The authors would like to thank the financial support of ANII and CSIC-Universidad de la República.

References

  1. 1.
    Becker, T., Jamieson, P., Luk, W., Cheung, P. Y. K., & Rissa, T. (2008). Towards benchmarking energy efficiency of reconfigurable architectures. In 2008 International conference on field programmable logic and applications, pp. 691–694. IEEE.Google Scholar
  2. 2.
    Benini, L., Macchiarulo, L., Macii, A., & Poncino, M. (2002). Layout-driven memory synthesis for embedded systems-on-chip. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 10(2), 96–105.CrossRefGoogle Scholar
  3. 3.
    Calimera, A., Benini, L., Macii, A., Macii, E., & Poncino, M. (2009). Design of a flexible reactivation cell for safe power-mode transition in power-gated circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(9), 1979–1993.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Calimera, A., Macii, A., Macii, E., & Poncino, M. (2012). Design techniques and architectures for low-leakage SRAMs. Circuits and Systems I: Regular Papers, IEEE Transactions on, 59(9), 1992–2007.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cano, C., Bellalta, B., Sfairopoulou, A., & Oliver, M. (2011). Low energy operation in WSNs: A survey of preamble sampling MAC protocols. Computer Networks, 55(15), 3351–3363.CrossRefGoogle Scholar
  6. 6.
    Chen, G., Li, F., Kandemir, M., Ozturk, O., & Demirkiran, I. (2006). Compiler-directed management of leakage power in software-managed memories. In IEEE computer society annual symposium on emerging VLSI technologies and architectures (ISVLSI’06), vol. 00, pp. 450–451. IEEE.Google Scholar
  7. 7.
    Dally, W. J., Chen, J., Harting, R. C., Balfour, J., Black-Shaffer, D., Parikh, V., et al. (2008). Efficient embedded computing. Computer, 41(7), 27–32.CrossRefGoogle Scholar
  8. 8.
    Dunkels, A., Österlind, F., Tsiftes, N., & He, Z. (2007). Software-based on-line energy estimation for sensor nodes. In Proceedings of the fourth workshop on embedded networked sensors (Emnets IV), Cork, Ireland, June.Google Scholar
  9. 9.
    Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels, A., Voigt, T., et al. (2009). COOJA/MSPSim: Interoperability testing for wireless sensor networks. In Proceedings of the 2nd international conference on simulation tools and techniques, simutools ’09, pp. 1–7, ICST, Brussels, Belgium, Belgium, 2009. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).Google Scholar
  10. 10.
    Farrahi, A. H., Téllez, G. E., Sarrafzadeh, M. (1995). Memory segmentation to exploit sleep mode operation. In Proceedings of the 32nd annual ACM/IEEE design automation conference, DAC ’95 (pp. 36–41). New York, NY: ACM.Google Scholar
  11. 11.
    Fonseca, R., Dutta, P., Levis, P., & Stoica, I. (2008). Quanto: Tracking energy in networked embedded systems. In Proceedings of the 8th USENIX conference on operating systems design and implementation, OSDI’08 (pp. 323–338). Berkeley, CA: USENIX Association.Google Scholar
  12. 12.
    Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., & Levis, P. (2009). Collection tree protocol. In Proceedings of the 7th ACM conference on embedded networked sensor systems, SenSys ’09 (pp. 1–14). New York, NY: ACM.Google Scholar
  13. 13.
    Golubeva, O., Loghi, M., Poncino, M., & Macii, E. (2007). Architectural leakage-aware management of partitioned scratchpad memories. In DATE ’07: Proceedings of the conference on design, automation and test in Europe (pp. 1665–1670). San Jose, CA: EDA Consortium.Google Scholar
  14. 14.
    Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., & Brown, R. B. (2001). MiBench: A free, commercially representative embedded benchmark suite. In Proceedings of the fourth annual IEEE international workshop on workload characterization. WWC-4 (Cat. No. 01EX538), pp. 3–14. IEEE.Google Scholar
  15. 15.
    Hempstead, M., Brooks, D., & Wei, G. (2011). An accelerator-based wireless sensor network processor in 130 nm CMOS. Emerging and selected topics in circuits and systems. IEEE Journal on, 1(2), 193–202.Google Scholar
  16. 16.
    Ko, J. G., Tsiftes, N., Dunkels, A., & Terzis, A. (2012). Pragmatic low-power interoperability: ContikiMAC vs TinyOS LPL. In Sensor, mesh and ad hoc communications and networks (SECON), 2012 9th annual IEEE communications society conference on, pp. 94–96. IEEE, June.Google Scholar
  17. 17.
    Ko, J. G., Klues, K., Richter, C., Hofer, W., Kusy, B., Bruenig, M., et al. (2012). Low power or high performance? A tradeoff whose time has come (and nearly gone). In Proceedings of the 9th European conference on wireless sensor networks, EWSN’12 (pp. 98–114). Berlin, Heidelberg: Springer.Google Scholar
  18. 18.
    Kwong, J., Ramadass, Y., Verma, N., Koesler, M., Huber, K., Moormann, H., et al. (2008). A 65nm sub-Vt microcontroller with integrated SRAM and switched-capacitor DC-DC converter. In Solid-state circuits conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE international, pp. 318–616. IEEE, February.Google Scholar
  19. 19.
    Loghi, Mirko, Golubeva, Olga, Macii, Enrico, & Poncino, Massimo. (2010). Architectural leakage power minimization of scratchpad memories by application-driven subbanking. IEEE Transactions on Computers, 59(7), 891–904.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Ozturk, Ozcan, & Kandemir, Mahmut. (2008). ILP-Based energy minimization techniques for banked memories. ACM Transactions on Design Automation of Electronic System, 13(3), 1–40.CrossRefGoogle Scholar
  21. 21.
    Pasha, M. A., Derrien, S., & Sentieys, O. (2010). A complete design-flow for the generation of ultra low-power WSN node architectures based on micro-tasking. In Design automation conference (DAC), 2010 47th ACM/IEEE, pp. 693–698. IEEE, June.Google Scholar
  22. 22.
    Polastre, J., Szewczyk, R., & Culler, D. (2005). Telos: Enabling ultra-low power wireless research. In Information processing in sensor networks, 2005. IPSN 2005. Fourth international symposium on, pp. 364–369. IEEE, April.Google Scholar
  23. 23.
    Prayati, A., Antonopoulos, Ch., Stoyanova, T., Koulamas, C., & Papadopoulos, G. (2010). A modeling approach on the TelosB WSN platform power consumption. Journal of Systems and Software, 83(8), 1355–1363.CrossRefGoogle Scholar
  24. 24.
    Rabaey, J. (2009). Optimizing power @ standby memory. In Low power design essentials, integrated circuits and systems (pp. 233–248). US: Springer.Google Scholar
  25. 25.
    Thoziyoor, S., Ahn, J. H., Monchiero, M., Brockman, J. B., Jouppi, N. P. (2008). A comprehensive memory modeling tool and its application to the design and analysis of future memory hierarchies. In 2008 International symposium on computer architecture, pp. 51–62, Washington, DC, USA, June. IEEE.Google Scholar
  26. 26.
    Vaandrager, F. (1998). Introduction, volume 1494 of lecture notes in computer science, chapter 1 (pp. 1–3). Berlin, Heidelberg: Springer.Google Scholar
  27. 27.
    Verma, N. (2011). Analysis towards minimization of total SRAM energy over active and idle operating modes. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 19(9), 1695–1703.CrossRefGoogle Scholar
  28. 28.
    Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., et al. (2012). RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550 (Proposed Standard), March.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Leonardo Steinfeld
    • 1
    Email author
  • Marcus Ritt
    • 2
  • Fernando Silveira
    • 1
  • Luigi Carro
    • 3
  1. 1.Facultad de Ingeniería, Instituto de Ingeniería EléctricaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Departamento de Informática Teórica, Instituto de InformáticaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Departamento de Informática Aplicada, Instituto de InformáticaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations