Wireless Networks

, Volume 20, Issue 8, pp 2481–2501 | Cite as

Security of the Internet of Things: perspectives and challenges

  • Qi Jing
  • Athanasios V. Vasilakos
  • Jiafu WanEmail author
  • Jingwei Lu
  • Dechao Qiu


Internet of Things (IoT) is playing a more and more important role after its showing up, it covers from traditional equipment to general household objects such as WSNs and RFID. With the great potential of IoT, there come all kinds of challenges. This paper focuses on the security problems among all other challenges. As IoT is built on the basis of the Internet, security problems of the Internet will also show up in IoT. And as IoT contains three layers: perception layer, transportation layer and application layer, this paper will analyze the security problems of each layer separately and try to find new problems and solutions. This paper also analyzes the cross-layer heterogeneous integration issues and security issues in detail and discusses the security issues of IoT as a whole and tries to find solutions to them. In the end, this paper compares security issues between IoT and traditional network, and discusses opening security issues of IoT.


Internet of Things Security Heterogeneous Wireless sensor networks RFID sensor networks 



The work was supported in part by the National Natural Science Foundation of China (No. 61100066, 61262013), the Open Fund of Guangdong Province Key Laboratory of Precision Equipment and Manufacturing Technology (No. PEMT1303), the National High Technology Research and Development Program of China (No. 2013AA014002), the Innovation Base Cultivating and Developing Engineering Program, Beijing Scientific and Technological Commission (No. Z131101002813085), and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA06040100).


  1. 1.
    Tsai, C., Lai, C., & Vasilakos, V. (2014). Future internet of things: Open issues and challenges. ACM/Springer Wireless Networks,. doi: 10.1007/s11276-014-0731-0.Google Scholar
  2. 2.
    Wan, J., Yan, H., Suo, H., & Li, F. (2011). Advances in cyber-physical systems research. KSII Transactions on Internet and Information Systems, 5(11), 1891–1908.CrossRefGoogle Scholar
  3. 3.
    International Telecommunication Union. (2005). Internet reports 2005: The internet of things. Geneva: ITU.Google Scholar
  4. 4.
    Hachem, S., Teixeira, T., & Issarny, V. (2011). Ontologies for the internet of things (pp. 1–6). New York: ACM.Google Scholar
  5. 5.
    Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the internet of things. Cluster of European Research Projects on the Internet of ThingsCERP IoT. Google Scholar
  6. 6.
    Akyildiz, I. F., Su, W., Sanakarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRefGoogle Scholar
  7. 7.
    Hamad, F., Smalov, L., & James, A. (2009). Energy-aware security in M-Commerce and the internet of things. IETE TechmeM review, 26(5), 357–362.CrossRefGoogle Scholar
  8. 8.
    Tsudik, G. (2006). YA-TRAP: Yet another trivial RFID authentication protocol. In Proceedings of fourth annual IEEE international conference on pervasive computing and communications workshops (pp. 196–200).Google Scholar
  9. 9.
    Mathur, S., Trappe, W., Mandayam, N., Ye, C., & Reznik, A. (2008) Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel. In Proceedings of MobiCom (pp. 128–139).Google Scholar
  10. 10.
    Montenegro, G., & Castelluccia, C. (2004). Crypto-based identifiers (CBIDs): Concepts and applications. ACM Transactions on Information and System Security, 7(1), 97–127.CrossRefGoogle Scholar
  11. 11.
    Xu, X. H. (2013). Study on security problems and key technologies of the internet of things. In Proceedings of the IEEE international conference on computing and information sciences (ICCIS) (pp. 407–410).Google Scholar
  12. 12.
    Ouafi, K., & Vaudenay, S. (2009). Pathchecker: An RFID Application for tracing products in suply-chains. In Proceedings of the workshop on RFID SecurityRFIDSec (vol. 9, pp. 1–14).Google Scholar
  13. 13.
    Blass, E. O., Elkhiyaoui, K., & Molva, R. (2011). Tracker: security and privacy for RFID based supply chains. In Proceeding of the 18th network and distributed system security symposium.Google Scholar
  14. 14.
    Elkhiyaoui, K., Blass, E. O., & Molva, R. (2012). CHECKER: On-site checking in RFID-based supply chains. In Proceedings of the fifth ACM conference on security and privacy in wireless and mobile networks.Google Scholar
  15. 15.
    Chen, M., Kwon, T., Mao, S., & Leung, V. (2009). Spatial–temporal relation-based energy-efficient reliable routing protocol in wireless sensor networks. International Journal of Sensor Networks, 5(3), 129–141.CrossRefGoogle Scholar
  16. 16.
    Suo, H., Wan, J., Zou, C., & Liu, J. (2012). Security in the internet of things: a review. In Proceedings of the IEEE international conference on computer science and electronics engineering (ICCSEE), (vol. 3, pp. 648–651).Google Scholar
  17. 17.
    Ye, T., Peng, Q. M., & Ru, Z. H. (2012). IoT’s perception layer, network layer and application layer security analysis. Accessed 12 Oct 2013.
  18. 18.
    Liu, B., Chen, H., Wang, H. T., & Fu, Y. (2012). Security analysis and security model research on IoT. Computer & Digital Engineering, 40(11), 21–24.Google Scholar
  19. 19.
    Suo, H., Liu, Z., Wan, J., & Zhou, K. (2013). Security and privacy in mobile cloud computing. In Proceedings of the 9th IEEE international wireless communications and mobile computing conference (pp. 655–659), Cagliari, Italy.Google Scholar
  20. 20.
    Wan, J., Chen, M., Xia, F., Li, D., & Zhou, K. (2013). From machine-to-machine communications towards cyber-physical systems. Computer Science and Information Systems, 10(3), 1105–1128.CrossRefGoogle Scholar
  21. 21.
    De Turck, F., Vanhastel, S., Volckaert, B., & Demeester, P. (2002). A generic middleware-based platform for scalable cluster computing. Future Generation Computer Systems, 18(4), 549–560.CrossRefzbMATHGoogle Scholar
  22. 22.
    Tan, Y. S., & Han, J. J. (2011). Service-oriented middleware model for internet of things. Computer Science, 38(BIO), 3.Google Scholar
  23. 23.
    ITU-T. Recommendation Y. 2002. (2010). Overview of ubiquitous networking and of its support in NGN. Geneva: ITU.Google Scholar
  24. 24.
    Want, R. (2006). An introduction to RFID technology. IEEE Pervasive Computing, 5(1), 25–33.CrossRefGoogle Scholar
  25. 25.
    Yang, G., Xu, J., Chen, W., Qi, Z. H., & Wang, H. Y. (2010). Security characteristic and technology in the internet of things. Journal of Nanjing University of Posts and Telecommunications (Natural science), 4, 20–29.Google Scholar
  26. 26.
    Wan, J., Zou, C., Ullah, S., Lai, C., Zhou, M., & Wang, X. (2013). Cloud-enabled wireless body area networks for pervasive healthcare. IEEE Network, 27(5), 56–61.CrossRefGoogle Scholar
  27. 27.
    EPC Global. (2004). EPC radio-frequency identity protocol Class-1 Generation-2 UHF RFID protocols for communications at 800 MHz-960 MHz, Ver. 1.0.9, EPC Global.Google Scholar
  28. 28.
    Wan, J., Zhang, D., Sun, Y., Lin, K., Zou, C., & Cai, H. (2014). VCMIA: A novel architecture for integrating vehicular cyber-physical systems and mobile cloud computing. ACM/Springer Mobile Networks and Applications, 19(2), 153–160.CrossRefGoogle Scholar
  29. 29.
    Liu, L. A., & Lai, S. L. (2006). ALOHA-based anti-collision algorithms used in RFID system. In Proceedings of the IEEE international conference on networking and mobile computing (pp. 1–4).Google Scholar
  30. 30.
    Hu, F., & Wang, F. (2010). Study of recent development about privacy and security of the internet of things. In Proceedings of the international conference on web information systems and mining (pp. 91–95).Google Scholar
  31. 31.
    Lv, B. Y., Pan, J. X., Ma, Q., & Xiao, Z. H. (2008). Research progress and application of RFID anti-collision algorithm. In Proceedings of the international conference on telecommunication engineering (vo1. 48, no. 7, pp. 124–128).Google Scholar
  32. 32.
    Finkenzeller, K. (2003). RFID handbook fundamentals and applications in contactless smart cards and identification (2nd ed.). West Sussex: Wiley.Google Scholar
  33. 33.
    Wang, D., Wang, J. W., & Zhao, Y. P. (2006). A novel solution to the reader collision problem in RFID system. In Proceeding of the IEEE wireless communications, networking and mobile computing (WiCOM 06) (pp. 1–4).Google Scholar
  34. 34.
    Song, I. C., Hong, S. H., & Chang, K. H. (2009). An improved reader anti-collision algorithm based on pulse protocol with slot occupied probability in dense reader mode. In Proceeding of the IEEE 69th vehicular technology conference (pp. 1–5).Google Scholar
  35. 35.
    Kim, J., Lee, W., Yu, J., Myung, J., Kim, E., & Lee, C. (2005). Effect of localized optimal clustering for reader anti-collision in RFID networks: Fairness aspects to the readers. In Proceeding of the IEEE international conference on computer communications and networks (pp. 497–502).Google Scholar
  36. 36.
    Weis, S. A., Sarma, S. E., Rivest, R. L., & Engels, D. W. (2004). Security and privacy aspects of low-cost radio frequency identification systems. Security in Pervasive Computing, 2802, 201–212.CrossRefGoogle Scholar
  37. 37.
    Blaskiewicz, P., Klonowski, M., Majcher, K., & Syga, P. (2013). Blocker-type method for protecting customers’ privacy in RFID systems. In Proceedings of the IEEE international conference on cyber-enabled distributed computing and knowledge discovery (CyberC) (pp. 89–96).Google Scholar
  38. 38.
    Chen, M., Gonzalez, S., Zhang, Q., & Leung, V. (2010). Code-centric RFID system based on software agent intelligence. IEEE Intelligent Systems, 25(2), 12–19.CrossRefGoogle Scholar
  39. 39.
    Spiekermann, S., & Berthold, O. (2005). Maintaining privacy in RFID enabled environments. Privacy, security and trust within the context of pervasive computing (pp. 137–146). Berlin: Springer.Google Scholar
  40. 40.
    Castelluccia, C., & Avoine, G. (2006). Noisy tags: A pretty good key exchange protocol for RFID tags. Smart Card Research and Advanced Applications (pp. 289–299). Berlin: Springer.Google Scholar
  41. 41.
    Juels, A., Rivest, R. L., & Szydlo, M. (2003). The blocker tag: Selective blocking of RFID tags for consumer privacy. In Proceedings of the 10th ACM conference on computer and communications security (CCS 2003), (pp. 103–111).Google Scholar
  42. 42.
    Ohkubo, M., Suzuki, K., & Kinoshita, S. (2003). Cryptographic approach to privacy- friendly tags. RFID privacy workshop (p. 82). Cambridge, MA: MIT.Google Scholar
  43. 43.
    Kinos, S., Hoshino, F., Komuro, T., Fujimura, A., & Ohkubo, M. (2003). Nonidentifiable anonymous—ID scheme for RFID privacy protection. Computer Security Symposium. Google Scholar
  44. 44.
    Duels, A., Pappu, R., & Euros, S. (2003). Privacy protection RFID-enabled banknotes. In Proceedings of seventh international financial cryptography conference (pp. 103–121).Google Scholar
  45. 45.
    T2TIT Research Group. (2006). The T2TITThing to thing in the internet of things-project. ANR.Google Scholar
  46. 46.
  47. 47.
    Toumi, K., Ayari, M., Saidane, L., A., Bouet, M., & Pujolle, G. (2010). HAT: HIP address translation protocol for hybrid RFID/IP internet of things communication. TUNISIA: International conference on wireless and ubiquitous systems (pp. 1–7).Google Scholar
  48. 48.
    Lakafosis, V., Traille, A., & Lee, H. (2011). RFID-CoA: The RFID tags as certificates of authenticity. In Proceedings of the IEEE international conference on RFID (pp. 207–214).Google Scholar
  49. 49.
    Karlof, C., Sastry, N., & Wagner, D. (2004). TinySec: A link layer security architecture for wireless sensor networks. In Proceedings of the second ACM conference on embedded networked sensor systems (pp. 162–175).Google Scholar
  50. 50.
    Chen, M., Lai, C., & Wang, H. (2011). Mobile multimedia sensor networks: Architecture and routing. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–9.CrossRefzbMATHGoogle Scholar
  51. 51.
    Han, K., Luo, J., Liu, Y., & Vasilakos, V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.CrossRefGoogle Scholar
  52. 52.
    Malan, D. J., Welsh, M., & Smith, M. D. (2004). A public-key infrastructure for key distribution in tinyOS based on elliptic curve cryptography. In Proceedings of the IEEE international conference on sensor and ad hoc communications and networks SECON04 (pp. 71–80).Google Scholar
  53. 53.
    Li, M., Li, Z., & Vasilakos, V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.CrossRefGoogle Scholar
  54. 54.
    Bohge, M., & Trappe, W. (2003). An authentication framework for hierarchical Ad Hoc sensor networks. In Proceedings of the 2nd ACM workshop on wireless security (pp. 79–87).Google Scholar
  55. 55.
    Zhu, S., Setia, S., & Jajodia, S. (2003). LEAP: efficient security mechanisms for large-scale distributed sensor networks. In Proceeding of ACM CCS (pp. 62–72).Google Scholar
  56. 56.
    Hu, Y. C., Johnson, D. B., & Perrig, A. (2003). SEAD: Secure efficient distance vector routing for mobile wireless Ad Hoc networks. Ad Hoc Networks, 1(1), 175–192.CrossRefGoogle Scholar
  57. 57.
    Sengupta, S., Das, S., Nasir, M., Vasilakos, V., & Pedrycz, W. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(6), 1093–1102.CrossRefGoogle Scholar
  58. 58.
    Huang, C. H., & Du, D. Z. (2005). New constructions on broadcast encryption and key pre-distribution schemes. IEEE INFOCOM, 1, 515–523.Google Scholar
  59. 59.
    Wander, A. S., Gura, N., Eberle, H., Gupta, V., & Shantz, S. C. (2005). Energy analysis of public-key cryptography for wireless sensor networks. In Proceedings of the IEEE international conference on pervasive computing and communications (pp. 324–328).Google Scholar
  60. 60.
    Chan, H., Perrig, A., & Song, D. (2003). Random key predistribution schemes for sensor networks. In Proceeding of the IEEE symposium on security and privacy (pp. 197–213).Google Scholar
  61. 61.
    Al-Turjman, F. M., Al-Fagih, A. E., Alsalih, W. M., & Hassanein, H. S. (2013). A delay-tolerant framework for integrated RSNs in IoT. Computer Communications, 36(9), 998–1010.Google Scholar
  62. 62.
    Ren, F. Y., Huang, H. N., & Lin, C. (2003). Wireless sensor networks. Journal of Software, 7, 1282–1290.Google Scholar
  63. 63.
    Liu, H., Bolic, M., Nayak, A., & Stojmenovic, I. (2008). Taxonomy and challenges of the integration of RFID and wireless sensor networks. IEEE Network, 22(6), 26–35.CrossRefGoogle Scholar
  64. 64.
    Chan, H. W., & Perrig, A. (2005). PIKE: Peer intermediaries for key establishment in sensor networks. In IEEE Infocom 2005 (vol. 1, pp. 524–535).Google Scholar
  65. 65.
    Eschenauer, L., & Gligor, V. D. (2002). A key-management scheme for distributed sensor networks. In Proceedings of the 9th ACM conference on computer and communications security (pp. 41–47).Google Scholar
  66. 66.
    Liu, D. G., & Ning, P. (2003). Location-based pairwise key establishments for static sensor networks. In Proceeding of 1st ACM workshop on security of ad hoc and sensor networks (pp. 72–82).Google Scholar
  67. 67.
    Perrigy, A., Canetti, R., Tygar, J. D., & Song, D. (2000). Efficient authentication and signing of multicast streams over lossy channels. In Proceedings of 2000 IEEE symp on security and privacy (S&P 2000) (pp. 56–73).Google Scholar
  68. 68.
    Perrig, A., Szewczyk, R., Tygar, J. D., Wen, V., & Culler, D. E. (2002). SPINS: Security protocols for sensor networks. Wireless Networks, 8(5), 521–534.CrossRefzbMATHGoogle Scholar
  69. 69.
    Gaubatz, G., Kaps, J., Ozturk, E., & Sunar, B. (2005). State of the art in ultra-low power public key cryptography for wireless sensor networks. In Proceedings of the third IEEE international conference on pervasive computing and communications (pp. 146–150).Google Scholar
  70. 70.
    Zhu, S. C., Setia, S., & Jajodia, S. (2003). LEAP: efficient security mechanisms for large-scale distributed sensor networks. In Proceeding of ACM CCS (pp. 62–72).Google Scholar
  71. 71.
    Pietro, R. D., Mancini, L. V., Law, Y. W., Etalle, S., & Havinga, P. J. M. (2003). LKHW: A directed diffusion-based secure multicast scheme for wireless sensor networks. In Proceedings of the 32nd international conference on parallel processing workshops (ICPP) (pp. 397–406). IEEE Computer Society Press.Google Scholar
  72. 72.
    Kotzanikolaou, P., & Magkos, E. (2005). Hybrid key establishment for multiphase self-organized sensor networks. In Proceedings of the sixth IEEE international symposium on a world of wireless mobile and multimedia networks (WoWMoM’05) and pervasive computing and communications workshops (pp. 146–150).Google Scholar
  73. 73.
    Karlof, C., & Wagner, D. (2003). Secure routing in wireless sensor networks: attacks and countermeasures. In Proceedings of the first IEEE international workshop on sensor network protocols and applications (vol. 1(2), pp. 293–315).Google Scholar
  74. 74.
    Cao, Z., Hu, J. B., Chen, Z., Xu, M. X., & Zhou, X. (2006). Feedback: towards dynamic behavior and secure routing in wireless sensor networks. In Proceedings of the IEEE workshop on pervasive computing and ad-hoc communication (PCAC’06) (vol. 2, pp. 160–164).Google Scholar
  75. 75.
    Wood, A. D., & Stankovic, J. A. (2002). Denial of service in sensor networks. IEEE Computer, 35(10), 54–62.CrossRefGoogle Scholar
  76. 76.
    Douceur, J. R. (2002). The sybil attack. In Proceeding of the 1st international workshop on peer-to-peer systems (IPTPS’02) (pp. 251–260).Google Scholar
  77. 77.
    Hu, Y. C., Perrig, A., & Johnson, D. B. (2003). Packet leashes: a defense against wormhole attacks in wireless networks. In Twenty-second annual joint conference of the IEEE computer and communications, INFOCOM 2003 (vol. 3, pp. 1976–1987).Google Scholar
  78. 78.
    Hu, Y. C., Perrig, A., & Johnson, D. B. (2002). Wormhole detection in wireless ad hoc networks. Department of Computer Science, Rice University, Tech. Rep. TR01-384.Google Scholar
  79. 79.
    Blaze, M., Feigenbaum, J., & Lacy, J. (1996). Decentralized trust management. In Proceedings of IEEE conference security and privacy (pp. 164–173).Google Scholar
  80. 80.
    Buchegger, S. J., & Le, J. Y. (2003). The effect of rumor for mobile ad-hoc networks. In Proceedings of the modeling and wireless networks (WiOpt). Google Scholar
  81. 81.
    Kamvar, S. D., Schlosser, M. T., & Garcia-Molina, H. (2003). The elgentrust algorithm for reputation management in p2p networks. In Proceedings of the twelfth international world wide web conference (pp. 640–651).Google Scholar
  82. 82.
    Yao, Z. Y., Kim, D. Y., Lee, I., Kim, K. Y., & Jang, J. S. (2005). A security framework with trust management for sensor networks. In Proceeding of the IEEE workshop of the 1st international conference on security and privacy for emerging areas in communication networks (pp. 190–198).Google Scholar
  83. 83.
    Ganeriwal, S., & Srivastava, M. B. (2004). Reputation-based framework for high integrity sensor networks. In Proceeding of the ACM workshop on security in ad-hoc & sensor networks (SASN) (pp. 66–67).Google Scholar
  84. 84.
    KSW microtec AG. KSWTempSens. Accessed 12 Oct 2013.
  85. 85.
    Wang, K., Bao, J., Wu, M., & Lu, W. (2010). Research on security management for internet of things. In Proceeding of the IEEE international conference on computer application and system modeling (ICCASM) (vol. 15, pp. 133–137).Google Scholar
  86. 86.
    Zhang, L., & Wang, Z. (2006). Integration of RFID into wireless sensor networks: architectures, opportunities and challenging problems. In Proceeding of the IEEE fifth international conference on grid and cooperative computing workshops GCCW ‘06 ((58), pp. 463–469).Google Scholar
  87. 87.
    Li, C., & Chen, C. L. (2011). A multi-stage control method application in the fight against phishing attacks. In Proceeding of the 26th computer security academic communication across the country (p. 145).Google Scholar
  88. 88.
    Anti-Phishing Working Group. (2009). Phishing activity trends report. Q42.Google Scholar
  89. 89.
    Liu, J., An, X. B., & Li, C. S. (2002). Wireless network communication principle and application (pp. 386–407). Beijing: Tsinghua University Press.Google Scholar
  90. 90.
    Liu, Z. Y., & Yang, Z. C. (2006). Ad hoc network and security analysis. The Computer Technology and Development, 16(1), 231.Google Scholar
  91. 91.
    Avudainayagam, A., Lou, W., & Fang, Y. (2003). DEAR: A device and energy aware routing protocol for heterogeneous Ad hoc networks. Parallel and Distributed Computing, 63(2), 228–236.CrossRefzbMATHGoogle Scholar
  92. 92.
    Ryu, J. H., & Cho, D. H. (2001). A new routing scheme concerning energy conservation in wireless home ad-hoc networks. IEEE Transactions on Consumer Electronics, 47(1), 1–5.CrossRefGoogle Scholar
  93. 93.
    Biyiklioglu, F., & Buzluca, F. (2007). A new mobility aware technique for heterogeneous mobile Ad hoc networks. In 12th Proceeding of the IEEE symposium on computers and communications (pp. 45–50).Google Scholar
  94. 94.
    Li, X., Bao, Y. Z., & Zhen, Y. (2004). Power and mobility-aware adaptive dynamic source routing in MANET. In Proceeding of IEEE TENCON 2004 conference on analog and digital techniques in electrical engineering, (vol. B, vol. 2, pp. 652–655).Google Scholar
  95. 95.
    Sun, Y. Y., Liu, Z. H., Li, Q., & Sun, L. M. (2010). A IoT security architecture for 3G access. Research and Development of the Computer, 47, 327–332.Google Scholar
  96. 96.
    Yang, Z. W. (2010). Look the internet of things from the internet and 3G. Radio frequency (rf) in the world, (01).Google Scholar
  97. 97.
    Xiong, Z. (2012). Based on analysis of internet security of 3G networks. Digital Technology and Application, 3, 231.Google Scholar
  98. 98.
    Sun, C. M., Sun, Y. P., & Zhou, J. (2005). Based on the 3G internet security mechanism research. Computer knowledge and technology, 7(31), 7632–7635.Google Scholar
  99. 99.
    Jin, R. (2010). Discussion of 6LowPan technology. Accessed 12 Oct 2013.
  100. 100.
    Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (2007). Transmission of IPv6 packets over IEEE 802.15.4 networks. Accessed 12 Oct 2013.
  101. 101.
    Kushalnagar, N., Montenegro, G., & Schumacher, C. (2007). IPv6 over low-power wireless personal area networks (6LoWPANs): Overview, assumptions, problem statement, and goals. Accessed 12 Oct 2013.
  102. 102.
    Khoshdelniat, R., Sinniah, G., R., Bakar, K. A., Shahari, M. H. M., Suryady, Z., & Sarwar, U. Performance evaluation of IEEE802. 15.4 6LoWPAN gateway. In Proceeding of the IEEE Asia-Pacific conference on communications (APCC) (pp. 253–258).Google Scholar
  103. 103.
    Wu, J. (2006). 6Lowpan technical analysis. Railway communication signal, 42(12), 38–40.Google Scholar
  104. 104.
    Gu, J. (2008). 6lowpan adaptation layer network self-organizing ability of the simulation and research. Computer Applications and Software, 20(10), 42–45.Google Scholar
  105. 105.
    Lu, G. (2008). 6Lowpan neighbor discovery protocol research. Computer Applications and Software, 20(4), 51–53.Google Scholar
  106. 106.
    Bandyopadhyay, D., & Sen, J. (2011). Internet of things: Applications and challenges in technology and standardization. Wireless Personal Communications, 58(1), 49–69.Google Scholar
  107. 107.
    Zhang, B., Zou, Z., & Liu, M. (2011). Evaluation on security system of internet of things based on fuzzy-AHP method. In Proceeding of the IEEE international conference on E -Business and E-Government (ICEE) (pp. 1–5).Google Scholar
  108. 108.
    Wang, Z. L., & Wang, F. H. (2011). Introduction to the internet of things engineering. Beijing: Mechanical Industry Press.Google Scholar
  109. 109.
    Zhang, G. G., Bi, Y., & Li, C., et al. (2013). Massive internet data security processing model research. Small Microcomputer System, 34(9), 2090–2094.Google Scholar
  110. 110.
    Yi, K. M. (2010). Preliminary study of IoT security. Internet Police Detachment of Public Security Bureau in Taian City.Google Scholar
  111. 111.
    Sweeney, L. (2002). K-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems, 5, 557–570.MathSciNetCrossRefGoogle Scholar
  112. 112.
    A. de Saint-Exupery. Internet of things [EB/OL]. Accessed 12 Oct 2013.
  113. 113.
    Sheng, N. H., Yu, Z., Li, L. F., Ming, L. W., & Feng, Q. S. (2006). Research on China internet of things’ services and management. Chinese of Journal Electronics, 34(12A), 2514–2517.Google Scholar
  114. 114.
    Zhang, D., Zhou, J., Guo, M., Cao, J., & Li, T. (2011). TASA: Tag-free activity sensing using RFID tag arrays. IEEE Transactions on Parallel and Distributed Systems, 22(4), 558–570.Google Scholar
  115. 115.
    Gu, D. C., Chen, L., & Zhang, Z. Q. (2013). Logistics monitoring design based on ZigBee technology. The Internet of Things Technology, 2, 79–86.Google Scholar
  116. 116.
    Zai, L., Liu, S. D., & Hu, X. B. (2007). ZigBee technology and application (p. 2007). Beijing: Beijing University of Aeronautics and Astronautics Press.Google Scholar
  117. 117.
    Shao, P. F., Wang, Z., & Zhang, B. R. (2012). Smart home system research for the mobile internet. The Computer Measurement and Control, 20(2), 474–476.Google Scholar
  118. 118.
    Chen, M., Wan, J., González, S., Liao, X., & Leung, V. (2014). A survey of recent developments in home M2 M networks. IEEE Communications Surveys and Tutorials, 16(1), 98–114.CrossRefGoogle Scholar
  119. 119.
    Chen, Y. P. (2013). The internet of things technology in the application of the smart home. China Public Security, 16, 61–63.Google Scholar
  120. 120.
    Bao, Y. Q. (2013). The smart home system based on internet of things technology research and discussion. The Internet of Things Technology, 7, 38–41.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Qi Jing
    • 1
    • 4
    • 5
  • Athanasios V. Vasilakos
    • 2
  • Jiafu Wan
    • 3
    Email author
  • Jingwei Lu
    • 1
  • Dechao Qiu
    • 1
  1. 1.School of Software and MicroelectronicsPeking UniversityBeijingChina
  2. 2.Department of Computer ScienceKuwait UniversityKuwaitKuwait
  3. 3.School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhouChina
  4. 4.Laboratory of Information Security, Institute of Information EngineeringCASBeijingChina
  5. 5.Beijing Key Laboratory of IOT Information Security Technology, Institute of Information EngineeringCASBeijingChina

Personalised recommendations