Wireless Networks

, Volume 20, Issue 7, pp 1967–1979 | Cite as

UPTIME: an IMS-based mobility framework for next generation mobile networks

  • Abolfazl Nazari
  • Philip Branch
  • Jason But
  • Hai L. Vu


Seamless inter-technology mobility is one of the fundamental requirements of next generation mobile networks. For seamless mobility, handover delay and packet loss should be minimized. However, existing solutions suffer from a number of shortcomings in satisfying these requirements: first, handover preparation schemes fail to minimize the handover delay as much as possible. Second, minimizing packet loss which is usually using soft handover (SHO) schemes are excessively wasteful of scarce resources. In this paper, we propose the uninterrupted proactive connection transfer for IMS mobility enhancement (UPTIME) mobility framework which achieves seamless mobility while minimizing excessive power and radio resource consumption. UPTIME incorporates two mechanisms; a proactive handover preparation method and an optimized SHO technique for handover execution. We demonstrate the benefits of the proposed framework through both analysis and simulation. Our simulation results for typical LTE/WiMAX handovers show that the handover preparation delay can be reduced by 70 %, and good packet loss performance can be achieved whilst saving 43 % of radio resources and 48 % of battery power.


Seamless handover Mobility management IMS NGMN 


  1. 1.
    3GPP. (2010). 3G security; Access security for IP-based services. TS 33203 Release 9.Google Scholar
  2. 2.
    3GPP. (2010). 3GPP system architecture evolution (SAE); Security aspects of non-3GPP accesses. TS 33402 Release 9.Google Scholar
  3. 3.
    3GPP. (2010). IP multimedia subsystem (IMS) stage 2. TS 23228 (Release 8).Google Scholar
  4. 4.
    3GPP. (2011). General packet radio service (GPRS) enhancements for evolved universal terrestrial radio access network (E-UTRAN) access. TS 23401 (Release 9).Google Scholar
  5. 5.
    3GPP. (2011). IP multimedia subsystem (IMS) service continuity; Stage 2. TS 23237 0 (Release 10).Google Scholar
  6. 6.
    Akyildiz, I., & Wang, W. (2004). The predictive user mobility profile framework for wireless multimedia networks. IEEE/ACM Transactions on Networking, 12(6), 1021–1035.CrossRefGoogle Scholar
  7. 7.
    Ciubotaru, B., & Muntean, G. M. (2009). SASHA—A quality-oriented handover algorithm for multimedia content delivery to mobile users. IEEE Transactions on Broadcasting, 55(2), 437–450.CrossRefGoogle Scholar
  8. 8.
    Dutta, A., Famolari, D., Das, S., Ohba, Y., Fajardo, V., Taniuchi, K., et al. (2008). Media-independent pre-authentication supporting secure interdomain handover optimization. IEEE Wireless Communications, 15(2), 55–64.CrossRefGoogle Scholar
  9. 9.
    Huang, J., Feng, R., Bi, Y., Wu, J., & Song, M. (2005). A IP layer soft-handover approach for all-IP wireless wetworks. In 2nd international conference on mobile technology, applications and systems, pp. 1–4.Google Scholar
  10. 10.
    IEEE. (2009). IEEE standard for local and metropolitan area networks—Media independent handover services. IEEE Standard 80221.Google Scholar
  11. 11.
    Ito, M., Komorita, S., Chiba, T., Kitatsuji, Y., & Yokota, H. (2010). On IMS-based fast session handover based on available network resources of access networks. In IEEE 6th international conference on wireless and mobile communications, pp. 78–85.Google Scholar
  12. 12.
    ITU-R. (2000). Guidelines for evaluation of radio transmission technologies for IMT-2000 (pp. 1–61). ITU-R M1225 2000.Google Scholar
  13. 13.
    ITU-T (2004). General overview of NGN. ITU-T Recommendation Y2001.Google Scholar
  14. 14.
    ITU-T. (2006). Mobility management requirements for NGN. ITU-T Recommendation Y2801.Google Scholar
  15. 15.
    Kibria, M., & Jamalipour, A. (2007). On designing issues of the next generation mobile network. IEEE Network, 21(1), 6–13.CrossRefGoogle Scholar
  16. 16.
    Lin, H. P., & Tseng, M. J. (2004). Two-level, multistate Markov model for satellite propagation channels. IEEE Proceedings Microwaves, Antennas and Propagation, 151(3), 241–248.CrossRefGoogle Scholar
  17. 17.
    Melnyk, M., Jukan, A., & Polychronopoulos, C. (2007). A cross-layer analysis of session setup delay in IP Multimedia Subsystem (IMS) with EV-DO wireless transmission. IEEE Transactions on Multimedia, 9(4), 869–881.CrossRefGoogle Scholar
  18. 18.
    Munir, A., & Gordon-Ross, A. (2010). SIP-based IMS signaling analysis for WiMax-3G interworking architectures. IEEE Transactions on Mobile Computing, 9(5), 733–750.CrossRefGoogle Scholar
  19. 19.
    Nagaraj, S., Garg, S., Liang, F., Yang, W., Mangalvedhe, N., Haug, J., & Pradap, K. V. (2009). Lab performance analysis of a 4G LTE prototype. In IEEE wireless communications and networking conference (WCNC 2009), pp. 1–6.Google Scholar
  20. 20.
    Nazari, A., Branch, P., But, J., & Vu, H. L. (2010). Conservative soft handoff for heterogeneous wireless networks. In IEEE wireless communication and networking conference, pp. 1–6.Google Scholar
  21. 21.
    Nazari, A., But, J., Branch, P., & Vu, H. (2012). PRIME: Pre-registration for IMS mobility enhancement. In IEEE international conference on multimedia and expo, pp. 920–924.Google Scholar
  22. 22.
    Alliance, N. G. M. N. (2006). Next generation mobile networks beyond HSPA and EvDo. White paper, Next Generation Mobile Networks Ltd.Google Scholar
  23. 23.
    Park, A., Park, J., Kang, S., & Choi, J. (2008). Soft handover mechanism for IPTV service over wireless networks. In IEEE 10th international conference on advanced communication technology (ICACT 2008), vol. 2, pp. 1318–1320.Google Scholar
  24. 24.
    Renier, T., Larsen, K., & Castro, G. (2007). Mid-session macro-mobility in IMS-based networks. Vehicular Technology Magazine, 2(1), 20–27.Google Scholar
  25. 25.
    WiMAX Forum. (2010). Architecture tenets, reference model and reference points-base specification. WMF-T32-001-R015v02.Google Scholar
  26. 26.
    WiMAX Forum. (2011). Architecture, detailed protocols and procedures policy and charging control. WMF-T33-109-R015v03.Google Scholar
  27. 27.
    Yi-Bing, L., Ming-Feng, C., Meng-Ta, H., & Lin-Yi, W. (2005). One-pass GPRS and IMS authentication procedure for UMTS. IEEE Journal on Selected Areas in Communications, 23(6), 1233–1239.CrossRefGoogle Scholar
  28. 28.
    Zaggoulos, G., Tran, M., & Nix, A. (2008). Mobile WiMAX system performance-simulated versus experimental results. In IEEE 19th international symposium on personal, indoor and mobile radio communications (PIMRC 2008), pp. 1–5.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Abolfazl Nazari
    • 1
  • Philip Branch
    • 1
  • Jason But
    • 1
  • Hai L. Vu
    • 1
  1. 1.Centre for Advanced Internet ArchitectureSwinburne University of TechnologyMelbourneAustralia

Personalised recommendations