Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Preference-aware coding data broadcast in delay tolerant networks

  • 180 Accesses

  • 1 Citations


Traditional data broadcasting schemes in delay tolerant networks assume that mobile users can only retrieve one data item in each time slot. In this paper, we propose a novel data broadcasting framework in the delay tolerant networks that exploits the concept of network coding to mix the delivered data items according to the user’s stored data items. Our approach enables a user to encode multiple data items dynamically in each time slot, and allows each user with a mobile device to retrieve a data item by using locally stored data items to decode the encoding data. Specifically, we design an algorithm called Preference-Aware Coding (PAC) to select the data items to be encoded in each time slot. The objective is to serve the maximal number of mobile users with the encoding data and minimize the access time required for data broadcasting in the delay tolerant networks. The algorithm avoids encoding unnecessary data in each time slot to reduce the access delay. We empirically implement the framework in the real delay tolerant networks, and simulation results show that the PAC algorithm can reduce the access time of the traditional scheme by 42 % on average.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    In this paper, we evaluate the performance of the broadcast schedule with the access time, where the access time is the time elapsing from the moment a user issues a query to the moment that all queried data items are decoded.


  1. 1.

    Ahlswede, R., Cai, N., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.

  2. 2.

    Android Developers, Bluetooth API Guides. (2014). http://developer.android.com/guide/topics/connectivity/bluetooth.html.

  3. 3.

    Athanasios, T. S., Vasilakos, V., & Zhang, Y. (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

  4. 4.

    Burleigh, S., Hooke, A., Torgerson, L., Fall, K., Cerf, V., Durst, B., et al. (2003). Delay-tolerant networking: An approach to interplanetary internet. IEEE Communications Magazine, 41, 128–136.

  5. 5.

    Deb, S., Medard, M., & Choute, C. (2005). On random network coding based information dissemination. IEEE International Symposium on Information Theory (ISIT 2005).

  6. 6.

    Fan, J., Chen, J., Du, Y., Wang, P., & Sun, Y. (2011). Delque: A socially aware delegation query scheme in delay-tolerant networks. IEEE Transactions on Vehicular Technology, 60(5).

  7. 7.

    Fan, J., Du, Y., Gao, W., Chen, J., & Sun, Y. (2010). Geography-aware active data dissemination in mobile social networks. In Proceedings of the IEEE MASS, pp. 109–118.

  8. 8.

    Fan, J.,Chen, J., Du, Y., Gao, W., Wu, J., & Sun, Y. (2013). Geocommunity-based broadcasting for data dissemination in mobile social networks. IEEE Transactions on Parallel and Distributed Systems, 24(4).

  9. 9.

    Fragouli, C., Boudec, J.-Y. L., & Widmer, J. (2006). Network coding: An instant primer. In SIGCOMM.

  10. 10.

    Gao, W., & Cao, G. (2011). User-centric data dissemination in disruption tolerant networks. In IEEE INFOCOM.

  11. 11.

    Gao, W., Li, Q., Zhao, B., & Cao, G. (2009). Multicasting in delay tolerant networks: A social network perspective. In ACM MobiHoc.

  12. 12.

    Gkantsidis, C., & Rodriguez, P. R. (2005). Network coding for large scale content distribution. In Proceedings of IEEE INFOCOM, Vol. 4, pp. 2235–2245.

  13. 13.

    Gupta, A., Kalra, A., Boston, D., & Borcea, C. (2009). Mobisoc: A middleware for mobile social computing applications. Mobile Networks and Applications, 14(1), 35–52.

  14. 14.

    Hui, J. C. P., & Yoneki, E. (2008). Bubble rap: Social-based forwarding in delay tolerant networks. In ACM MobiHoc.

  15. 15.

    Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., & Diot, C. (2005). Pocket switched networks and human mobility in conference environments. In ACM SIGCOMM workshop on delay-tolerant networking.

  16. 16.

    Ioannidis, S., Chaintreau, A., & Massoulie, L. (2009). Optimal and scalable distribution of content updates over a mobile social network. In IEEE INFOCOM.

  17. 17.

    Jain, S., Demmer, M., Patra, R., & Fall, K. (2005). Using redundancy to cope with failures in a delay tolerant network. SIGCOMM Computer Communication Review, 35(4), 109–120.

  18. 18.

    Jin, L., Chen, Y., Wang, T., Hui, P., & Vasilakos, A. V. (2013). Understanding user behavior in online social networks: A survey. IEEE Communications Magazine, 51(9), 144–150.

  19. 19.

    Karlsson, G., Lenders, V., & May, M. (2007). Delay-tolerant broadcasting. IEEE Transactions on Broadcasting, 53(1), 369–381.

  20. 20.

    Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). Codepipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In IEEE INFOCOM, pp. 100–108.

  21. 21.

    Lin, K. C. G., Chen, C. W., & Chou, C. F. (2012). Preference-aware content dissemination in opportunistic mobile social networks. In Infocom.

  22. 22.

    Lin, Y., Li, B., & Liang, B. (2008). Efficient network coded data transmissions in disruption tolerant networks. In INFOCOM.

  23. 23.

    Milgram, S. (1967). The small world problem. Psychology Today, 2(1), 60–67.

  24. 24.

    Nanopoulos, A., Katsaros, D., & Manolopouslos, Y. (2001). Effective prediction of web-user accesses: A data mining approach. In Proceedings of the WEBKDD workshop.

  25. 25.

    Spyropoulos, T., Psounis, K., & Raghavendra C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In ACM SIGCOMM, pp. 252–259.

  26. 26.

    Spyropoulos, T., Rais, R. N., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

  27. 27.

    Wang, Y., Vasilakos, A. V., Jin, Q., & Ma, J. (2013). Survey on mobile social networking in proximity (msnp): Approaches, challenges and architecture. Wireless Networks.

  28. 28.

    Watts, D., & Strogatz, S. (1998). Collective dynamics of small-world networks. Nature, 393, 440–442.

  29. 29.

    Wei, G., Zhu, P., Vasilakos, A. V., Mao, Y., Luo, J., & Ling, Y. (2013). Cooperation dynamics on collaborative social networks of heterogeneous population. IEEE Journal on Selected Areas in Communications, 31(6), 1135–1146.

  30. 30.

    Xia, F., Liu, L., Li, J., Ma, J., & Vasilakos, A. (2013). Socially aware networking: A survey. IEEE Systems Journal, pp. 1–18.

  31. 31.

    Zhang, Q., Jin, Z., Zhang, Z., & Shu, Y. (2009). Network coding for applications in the delay tolerant network (dtn). In Fifth international conference on mobile ad-hoc and sensor, networks, 14–16 December 2009, pp. 376–380.

  32. 32.

    Zhao, B., Song, Z., Su, J., Peng, W., & Hu, Q. (2011). Ntc: Towards efficient network coding in delay tolerant networks. In Fifth international conference on innovative mobile and internet services in ubiquitous computing, pp. 57–64

Download references


The work was supported in part by the National Science Council of Taiwan, R.O.C., under Contracts NSC102-2221-E-025-005.

Author information

Correspondence to Chung-Hua Chu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chu, C. Preference-aware coding data broadcast in delay tolerant networks. Wireless Netw 20, 1825–1838 (2014). https://doi.org/10.1007/s11276-014-0712-3

Download citation


  • Data broadcast
  • Network coding
  • Delay tolerant networks