Wireless Networks

, Volume 20, Issue 6, pp 1275–1293 | Cite as

An overlay and distributed approach to node mobility in multi-access wireless networks

  • Paolo DiniEmail author
  • Jaume Nin Guerrero
  • Nicola Baldo


Nowadays many manufacturers are building mobile devices with multiple interfaces. Thus, users have access to different types of wireless access networks, which often, as for WLAN and cellular systems, coexists independently. The challenge is to make such multiple access networks to cooperate to have ubiquitous access and enhanced user quality of service. In this paper we present a scheme to allow inter-technology mobility by the introduction of an overlay network, which works on top of current (and future) networks. The proposed architecture controls all the aspect related to the mobility management: mobile node localization, handover decision and execution. The approach is distributed: it is the mobile node that decides which network to use, based on the offered service quality and the cost of the communication of the available networks, and triggers the handover execution directly to the corresponding host, using optimized SIP-based procedures. The overlay network copes with the mobile node localization. We implemented our solution in the laboratory to prove its validity and to test performance using real equipment. We also simulated the scheme using ns-3 to extend the evaluation to large scale deployments. In both test environments, our solution demonstrates high accurateness in selecting the network with the best quality as well as in supporting seamless vertical handover.


Heterogeneous networks Vertical handover VoIP SIP Overlay networks 



This work has been made possible through joint collaboration with Cisco Advanced Architecture & Research Group and has been partially funded by the Spanish Ministry of Science and Innovation under grant TEC2011-29700-C02-01 (project SYMBIOSIS) and by the Generalitat de Catalunya under grant 2009-SGR-940.


  1. 1.
    Gustafsson, E., & Jonsson, A. (2003, February). Always best connected. IEEE Wireless Communications, (1).Google Scholar
  2. 2.
    Calin, D., Claussen, H., & Uzunalioglu, H. (2010, January). On femto deployment architectures and macrocell offloading benefits in joint macro-femto deployments. IEEE Communications Magazine, 48(1), 26–32.Google Scholar
  3. 3.
    Cheng, S. M., Lien, S. Y., Chu, F. S., &Chen, K. C. (2011, June). On exploiting cognitive radio to mitigate interference in macro/femto heterogeneous networks. IEEE Wireless Communications, 18(3), 40–47.Google Scholar
  4. 4.
    Tipmongkolsilp, O., Zaghloul, S., & Jukan, A. (2011). The evolution of cellular backhaul technologies: Current issues and future trends. IEEE Communications Surveys & Tutorials, 13(1), 97–113.Google Scholar
  5. 5.
  6. 6.
    Wakikawa, R., Devarapalli, V., Ernst, T., & Nagami, K. (2009, March). Multiple care-of addresses registration, internet draft.Google Scholar
  7. 7.
    Guha, S., Takeda, Y., & Francis, P. (2004). NUTSS: A SIP-based approach to UDP and TCP network connectivity. In Proceeding FDNA ‘04 workshop on future directions in network architecture of the ACM SIGCOMM, New York.Google Scholar
  8. 8.
    Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston A., Peterson J., Sparks R., et al. (2002, June). SIP: Session initiation protocol, RFC 3261.Google Scholar
  9. 9.
    Camarillo, G., & Garcia Martin, M. A. (2008). The 3G IP multimedia subsystem (IMS). WILEY ed.Google Scholar
  10. 10.
    Dutta, A., Manousaki, K., Das, S., Lin, F. J., Chiba, T., Yokota, H., et al. (2007, July). Mobility testbed for 3GPP2-based multimedia domain networks. IEEE communications magazine. Google Scholar
  11. 11.
    Farha, R., Khavari, K., Abji, N., & Leon-Garcia, A. (2006). Peer-to-peer mobility management for all-IP networks. In Proceedings of IEEE ICC.Google Scholar
  12. 12.
    Farha, R., Khavari, K., & Leon-Garcia, A. (2007). Peer-to-peer vertical mobility management. In Proceedings of IEEE ICC.Google Scholar
  13. 13.
    Yan, X., Şekercioğlu, Y. A., & Narayanan, S. (2010, August 2). A survey of vertical handover decision algorithms in fourth generation heterogeneous wireless networks. Computer networks, Vol. 54, No. 11.Google Scholar
  14. 14.
    Van der Berg, E., Gopalakrishnan, P., Kim, B., Lyles, B., Kim, W.-I., Shin, Y. S., et al. (2007). Dynamic network selection using kernels. In Proceedings of IEEE ICC 2007. Google Scholar
  15. 15.
    Sachs, J., Aguero, R., Daoud, K., Gebert, J., Koudouridis, G. P., Meago, F., et al. (2007). Generic abstraction of access performance and resources for multi-radio access management. In Proceedings of the IST in mobile and wireless communications summit.Google Scholar
  16. 16.
    McGovern, P., Chung, S., Murphy, S., & Murphy, L. (2006, May). Endpoint admission control for VoIPoWLAN. In Proceedings of ICT 2006.Google Scholar
  17. 17.
    Chakeres, I. D., & Belding-Royer, E. M. (2004). PAC: Perceptive admission control for mobile wireless networks. In Proceedings of the QSHINE 2004, Washingthon, DC, USA.Google Scholar
  18. 18.
    Yasukawa, K., Forte, A. G., & Schulzrinne, H. (2009, June). Distributed delay estimation and call admission control in IEEE 802.11 WLANs. In Proceedings of IEEE ICC.Google Scholar
  19. 19.
    Nguyen, D. D., Xia, Y., Son, M. N., Yeo, C. K., & Lee, B. S. (2008, Novemeber/December). A mobility management scheme with QoS support for heterogeneous multihomed mobile nodes. In Proceedings of the IEEE GlobeCom 2008, New Orleans.Google Scholar
  20. 20.
    Johnston, A., Donovan, S., Sparks, R., Cunningham, C., & Summers, K. (2003, December). Session initiation protocol (SIP) basic call flow examples, RFC 3665.Google Scholar
  21. 21.
    Salsano, S., Polidoro, A., Mingardi, C., Niccolini, S., & Veltri, L. (2008, April). SIP-based mobility management in next generation networks. IEEE Wireless Communications, 15(2), 92–99.Google Scholar
  22. 22.
    Wu, W., Banerjee, N., Basu, K., & Das, K. (2008, June). SIP-based vertical handoff between WWANs and WLANs. IEEE Wireless Communications, 12(3), 66–72.Google Scholar
  23. 23.
    Banerjee, N., Das, S. K., & Acharya, A. (2005). SIP-based architecture for next generation wireless networks. In Proceedings of the IEEE PerComm.Google Scholar
  24. 24.
    Dutta, A., Kim, B., Zhang, T., Baba, S., Taniuchi, K., & Ohba, Y. (2005, June 13–16). Experimental analysis of multi interface mobility management with SIP and MIP. In Proceedings of wireless networks, communications and mobile computing, 2005 international conference, pp. 1301–1306, vol. 2 Print ISBN: 0-7803-9305-8.Google Scholar
  25. 25.
    Dutta, A., Madhani, S., Chen, W., Altintas, O., & Schulzrinne, H. (2004). Fast-handoff schemes for application layer mobility management. In Proceedings of IEEE PIMRC.Google Scholar
  26. 26.
    Dutta, A., Ling, Y., Chen, W., & Chennikara, J. (2002). Multimedia SIP sessions in a mobile heterogeneous access environment. In Proceedings of 3G wireless.Google Scholar
  27. 27.
    Bianchi, G. (2000, March). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal Selected Areas in Communications, 18(3), 535–547.Google Scholar
  28. 28.
    IEEE Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) Specifications.Google Scholar
  29. 29.
    IEEE Std. 802.11-2007. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, 2007.Google Scholar
  30. 30.
    Tamma, B. R., Baldo, N., Manoj, B. S., & Rao, R. (2009, June). Multi-channel wireless traffic sensing and characterization for cognitive networking. In Proceedings of IEEE ICC.Google Scholar
  31. 31.
    Duffy, K., Malone, D., & Leith, D. J. (2007, February). Modeling the 802.11 distributed coordination function in non-saturated conditions. IEEE Communications Letters, 9(8), 159–172.Google Scholar
  32. 32.
    Baldo, N., & Zanella, A. (2009, October). A game theoretic evaluation of rate adaptation strategies for IEEE 802.11 based wireless LANs, In Proceedings of ICST GameComm, Brussels.Google Scholar
  33. 33.
    Garg, S., & Kappes, M. (2003, May). Can I add a VoIP call. In Proceedings of the IEEE ICC 2003, Seattle, USA.Google Scholar
  34. 34.
    Dini, P., Baldo, N., Nin Guerrero, J., Mangues, J., Addepalli, S., & Dai, L. (2010). Distributed call admission control for VoIP over 802.11 WLANs based on channel load estimation. In Proceedings of the IEEE international conference on communications (ICC-2010), 23–27 May 2010, Cape Town (South Africa).Google Scholar
  35. 35.
    Ekiga application webpage:
  36. 36.
    Portoles-Comeras, M., Requena-Esteso, M., Mangues-Bafalluy, J., Cardenete-Suriol, M. (2006). EXTREME: Combining the ease of management of multi-user experimental facilities and the flexibility of proof of concept testbeds. In Proceedings of the IEEE TridentCom.Google Scholar
  37. 37.
    SIP Express Router webpage:
  38. 38.
    IPROUTE2 Utility Suite webpage:
  39. 39.
    Dini, P., Portoles-Comeras, M., Mangues-Bafalluy, J., Dai, L., & Addepalli, S. (2009, April). A real-time cellular system architecture to experiment with UMTS/HSDPA in a laboratory. In Proceedings of the IEEE TridentCom 2009.Google Scholar
  40. 40.
    Mgen: Multi-Generator webpage:
  41. 41.
    The ns-3 network simulator [online] available at:
  42. 42.
    Baldo, N., Requena, M., Nuñez, J., Portolès, M., Nin Guerrero, J., Dini, P., et al. (2010, March). Validation of the IEEE 802.11 MAC model in the ns3 simulator using the EXTREME testbed. In Proceedigs of Simutools.Google Scholar
  43. 43.
    Garg, S., & Kappes, M. (2003). Admission control for VoIP traffic in IEEE 802.11 networks. In Proceedings of IEEE GLOBECOM.Google Scholar
  44. 44.
    Zhai, H., Chen, X., & Fang, Y. (2005, November). How well can the IEEE 802.11 wireless LAN support quality of service? IEEE Transactions on Wireless Communications, 4(6), 3084–3094.Google Scholar
  45. 45.
    Clark, A. (2001, April 30). Extended E-model T1A1.1/2001-037 extensions to the E model to incorporate the effects of time varying packet loss and recency.Google Scholar
  46. 46.
    Ie values ITU-T Rec. G.113. (2007, November). Transmission impairments due to speech processing. Google Scholar
  47. 47.
    E-model ITU-T Rec. G.107. (2005, March). The E-model, a computational model for use in transmission planning.Google Scholar
  48. 48.
    Kim, W. I. et al. (2007). Ping–pong avoidance algorithm for vertical handover in wireless overlay networks. In Proceedings of IEEE 66-th vehicular technology conference, VTC-2007, pp. 1509–1512, Sept. 30 2007–Oct. 3 2007.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Centre Tecnologic de Telecomunicacions de CatalunyaCastelldefelsSpain

Personalised recommendations