Wireless Networks

, Volume 20, Issue 4, pp 787–803 | Cite as

Multi-parameter performance analysis for decentralized cognitive radio networks

  • Dionysis Xenakis
  • Nikos Passas
  • Lazaros Merakos


In this paper, we investigate the impact of primary user activity, secondary user activity, interface switching, channel fading and finite-length queuing on the performance of decentralized cognitive radio networks. The individual processes of these service-disruptive effects are modeled as Markov chains based on cross-layer information locally available at the network nodes. A queuing analysis is conducted and various performance measures are derived regarding the packet loss, throughput, spectral efficiency, and packet delay distribution. Numerical results demonstrate the impact of various system parameters on the system performance, providing insights for cross-layer design and autonomous decision making in decentralized cognitive radio networks.


Cognitive radio Decentralized networks User activity Interface switching Channel fading Adaptive modulation and coding Performance analysis 



This paper has been partially funded by the CROSSFIRE (MITN 317126) and co-financed by the EU (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.


  1. 1.
    Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRefGoogle Scholar
  2. 2.
    Mitola, J., et al. (1999). Cognitive radio: Making software radios more persona. IEEE Personal Communications, 6(4), 13–18.CrossRefGoogle Scholar
  3. 3.
    Jondral, F. K. (2005). Software-defined radio—Basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, vol 2005(3). Article ID 652784.Google Scholar
  4. 4.
    Wang, B., & Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.CrossRefGoogle Scholar
  5. 5.
    Akyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810–836.CrossRefGoogle Scholar
  6. 6.
    Hossain, E., Niyato, D., & Han, Z. (2009). Dynamic spectrum access and management in cognitive radio networks. Cambridge: Cambridge University Press, ISBN: 978-0-521-89847-8.Google Scholar
  7. 7.
    Zhao, Q., Tong, L., Swami, A., & Chen, Y. (2007). Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas in Communications, 25(3), 589–600.CrossRefGoogle Scholar
  8. 8.
    Yang, Z., Cheng, G., Liu, W., Yuan, W., & Cheng, W. (2008). Local coordination based routing and spectrum assignment in multi-hop cognitive radio networks. Mobile Networks and Applications, 13(1–2), 67–81.CrossRefGoogle Scholar
  9. 9.
    Liu, Q., Zhou, S., & Giannakis, G. B. (2005). Queuing with adaptive modulation and coding over wireless link: Cross-layer analysis and design. IEEE Transactions on Wireless Communications, 4, 1142–1153.CrossRefGoogle Scholar
  10. 10.
    Le, L. B., Hossain, E., & Alfa, A. S. (2006). Delay statistics and throughput performance for multi-rate wireless networks under ARQ and multiuser diversity. IEEE Transactions on Wireless Communications, 5(11), 3234–3243.CrossRefGoogle Scholar
  11. 11.
    Kyasanur, P., & Vaidya, N. H. (2006). Routing and link-layer protocols for multi-channel multi-interface Ad Hoc wireless networks. ACM SIGMOBILE Mobile Computing and Communications Review, 10(1), 31–43.CrossRefGoogle Scholar
  12. 12.
    Jiang, H., Lai, L., Fan, R., & Poor, H. V. (2009). Optimal selection of channel sensing order in cognitive radio. IEEE Transactions on Wireless Communications, 8(1), 297–307.CrossRefGoogle Scholar
  13. 13.
    Kim, H., & Shin, K. (2008). Efficient Discovery of Spectrum Opportunities with MAC-Layer Sensing in Cognitive Radio Networks. IEEE Transactions on Mobile Computing, 7(5), 533–545.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hou, T., Shi, Y., & Sherali, H. D. (2008). Spectrum sharing for multi-hop networking with cognitive radios. IEEE Journal on Selected Areas in Communications, 26(1), 146–154.CrossRefGoogle Scholar
  15. 15.
    Tang, J., Hincapie, R., Xue, G., Zhang, W., & Bustamante, R. (2010). Fair bandwidth allocation in wireless mesh networks with cognitive radios. IEEE Transactions on Vehicular Technology, 59(3), 1487–1496.CrossRefGoogle Scholar
  16. 16.
    Shiang, H. P., & van der Schaar, M. (2009). Distributed resource management in multi-hop cognitive radio networks for delay sensitive transmission. IEEE Transactions on Vehicular Technology, 58(2), 941–953.CrossRefGoogle Scholar
  17. 17.
    Devroye, N., Mitran, P., & Tarokh, V. (2006). Achievable rates in cognitive radio. IEEE Transactions on Information Theory, 52(5), 1813–1827.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Jafar, S. A., & Srinivasa, S. (2007). Capacity limits of cognitive radio with distributed and dynamic spectral activity. IEEE Journal on Selected Areas in Communications, 25(3), 529–537.CrossRefGoogle Scholar
  19. 19.
    Shankar, S. (2007). Squeezing the most out of cognitive radio: a joint MAC/PHY perspective. IEEE Conference on Acoustics Speech and Signal Processing (ICASSP), 4, 1361–1364.Google Scholar
  20. 20.
    Rashid, M., Hossain, M. J., Hossain, E., & Bhargava, V. K. (2009). Opportunistic spectrum scheduling for multiuser cognitive radio: a queuing analysis. IEEE Transactions on Wireless Communications, 8(10), 5259–5269.CrossRefGoogle Scholar
  21. 21.
    Shi, Z., Beard, C., & Mitchell, K. (2012). Competition, cooperation, and optimizaion in multi-hop csma networks with correlated traffic. International Journal of Next-Generation Computing, 3(3).Google Scholar
  22. 22.
    Shi, Z., Beard, C., & Mitchell, K. (November 2011). Competition, cooperation, and optimization in multi-hop CSMA networks. In Proceedings of the 8th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks (PE-WASUN ‘11).Google Scholar
  23. 23.
    Felegyhazi, M., & Hubaux, J.-P. (2006). Game theory in wireless networks: A tutorial. EPFL—Switzerland, EPFL Technical report.Google Scholar
  24. 24.
    Anderson, T. W., & Goodman, L. A. (1957). Statistical inference about Markov chains. The Annals of Mathematical Statistics, 28(1), 89–110.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Nakagami, M. (1960). The m-distribution—A general formula for intensity distribution of rapid fading. In W. G. Hoffman (Ed.), Statistical methods in radio wave propagation. Oxford: Pergamon Press.Google Scholar
  26. 26.
    Cinlar, E. (1975). Introduction to stochastic processes. Englewood Cliffs: Prentice-Hall, ISBN: 0-13-498089-1.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dionysis Xenakis
    • 1
  • Nikos Passas
    • 1
  • Lazaros Merakos
    • 1
  1. 1.Department of Informatics and TelecommunicationsUniversity of AthensAthensGreece

Personalised recommendations