Wireless Networks

, Volume 19, Issue 7, pp 1691–1707 | Cite as

Analysis and optimization of duty-cycle in preamble-based random access networks

Article

Abstract

Duty-cycling has been proposed as an effective mechanism for reducing the energy consumption in wireless sensor networks (WSNs). Asynchronous duty-cycle protocols where the receiver wakes up periodically to check whether there is a transmission and the sender transmits preambles to check if the receiver is awake are widely used in WSNs due to the elimination of complex control mechanisms for topology discovery and synchronization. However, the intrinsic simplicity of the asynchronous mechanism has the drawback of smaller energy saving potential that requires the optimization of the duty cycle parameters. In this paper, we propose a novel method for the optimization of the duty-cycle parameters in preamble-based random access networks based on the accurate modeling of delay, reliability and energy consumption as a function of listen time, sleep time, traffic rate and medium access control (MAC) protocol parameters. The challenges for modeling are the random access MAC and the sleep policy of the receivers, which make it impossible to determine the exact time of data packet transmissions, and thus difficult to investigate the performance indicators given by the delay, reliability and energy consumption to successfully receive packets. An analysis of these indicators is developed as a function of the relevant parameters of the network and it is used in the minimization of the energy consumption subject to delay and reliability requirements. The optimization provides significant reduction of the energy consumption compared to the previously proposed protocols in the literature.

Keywords

Wireless sensor networks MAC IEEE 802.15.4 Duty cycle Optimization 

References

  1. 1.
    Fischione, C., Coleri Ergen, S., Park, P., Johansson, K. H., & Sangiovanni-Vincentelli, A. (2009). Medium access control analytical modeling and optimization in unslotted IEEE 802.15.4 wireless sensor networks. In IEEE SECON.Google Scholar
  2. 2.
    Willig, A. (2008). Recent and emerging topics in wireless industrial communication. IEEE Transactions on Industrial Informatics, 4(2), 102–124.CrossRefGoogle Scholar
  3. 3.
    IEEE 802.15.4 standard: wireless medium access control and physical layer specifications for low-rate wireless personal area networks, IEEE. (2006). http://www.ieee802.org/15/pub/TG4.html.
  4. 4.
    Routing Over Low power and Lossy networks. http://www.ietf.org/dyn/wg/charter/roll-charter.html.
  5. 5.
    Latre, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.CrossRefGoogle Scholar
  6. 6.
    Xu, Y., Heidemann, J., & Estrin, D. (2001). Geography-informed energy conservation for ad hoc routing. In ACM MobiCom.Google Scholar
  7. 7.
    Chen, B., Jamieson, K., Balakrishnan, H., & Morris, R. (2001). Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. In ACM MobiCom.Google Scholar
  8. 8.
    Ye, W., Heidemann, J., & Estrin, D. (2004). Medium access control with coordinated sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, 12(3), 493–506.CrossRefGoogle Scholar
  9. 9.
    Van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient MAC protocol for wireless sensor networks. In ACM conference on embedded networked sensor systems.Google Scholar
  10. 10.
    Ganeriwal, S., Tsikogiannis, I., Shim, H., Tsiatsis, V., Srivastava, M., & Ganesan, D. (2009). Estimating clock uncertainty for efficient duty-cycling in sensor networks. IEEE/ACM Transactions on Networking, 17(3), 843–856.CrossRefGoogle Scholar
  11. 11.
    Shi, X., & Stromber, G. (2007). SyncWuf: An ultra low-power MAC protocol for wireless sensor networks. IEEE Transactions on Mobile Computing, 6(1), 115–125.CrossRefGoogle Scholar
  12. 12.
    Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In ACM SenSys.Google Scholar
  13. 13.
    The TinyOS community forum. http://www.tinyos.net.
  14. 14.
    Buettner, M., Yee, G., Anderson, E., & Han, R. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In ACM SenSys.Google Scholar
  15. 15.
    Parker, T., Halkes, G., Bezemer, M., & Langendoen, K. (2010). The λ-MAC framework: Redefining MAC protocols for wireless sensor networks. Wireless Networks, 16(7), 2013–2029.CrossRefGoogle Scholar
  16. 16.
    Ergen, S. C., & Varaiya, P. (2006). PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks. IEEE Transactions on Mobile Computing, 5(7), 920–930.CrossRefGoogle Scholar
  17. 17.
    Oh, H., & Han, T.-D. (2012). A demand-based slot assignment algorithm for energy-aware reliable data transmission in wireless sensor networks. Wireless Networks, 18(5), 523–534.CrossRefGoogle Scholar
  18. 18.
    Ocakoglu, O., & Ercetin, O. (2006). Energy efficient random sleep awake schedule design. IEEE Communications Letters, 10(7), 528–530.Google Scholar
  19. 19.
    Park, T. R., Park, K. J., & Lee, M. J. (2009). Design and analysis of asynchronous wakeup for wireless sensor networks. IEEE Transactions on Wireless Communications, 8(11), 5530–5541.CrossRefGoogle Scholar
  20. 20.
    Cho, K. T., & Bahk, S. (2010). Duty-cycle optimization for a multi-hop transmission method in wireless sensor networks. IEEE Communications Letters, 14(3), 269–271.CrossRefGoogle Scholar
  21. 21.
    Lee, H., Hong, J., Yang, S., Jang, I., & Yoon, H. (2010). A pseudo–random asynchronous duty cycle MAC protocol in wireless sensor networks. IEEE Communications Letters, 14(2), 136–138.CrossRefGoogle Scholar
  22. 22.
    Rhee, I., Warrier, A., Aia, M., Min, J., & Sichitiu, M. L. (2008). Z-MAC: A hybrid MAC for wireless sensor networks. IEEE/ACM Transactions on Networking, 16(3), 511–524.CrossRefGoogle Scholar
  23. 23.
    Sun, Y., Gurewitz, O., & Johnson, D. B. (2008). RI-MAC: A receiver initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In ACM SenSys.Google Scholar
  24. 24.
    Liu, S., Fan, K. W., & Sinha, P. (2009). CMAC: An energy-efficient MAC layer protocol using convergent packet forwarding for wireless sensor networks. ACM Transactions on Sensor Networks, 5(4), 1–34.CrossRefMATHGoogle Scholar
  25. 25.
    Sun, Y., Gurewitz, O., Du, S., Tang, L., & Johnson, D. B. (2009). ADB: An efficient multihop broadcast protocol based on asynchronous duty-cycling in wireless sensor networks. In ACM SenSys.Google Scholar
  26. 26.
    Yoo, H., Shim, M., & Kim, D. (2012). Dynamic duty-cycle scheduling schemes for energy-harvesting wireless sensor networks. IEEE Communications Letters, 16(2), 202–204.CrossRefGoogle Scholar
  27. 27.
    Cohen, R., & Kapchits, B. (2009). An optimal wake-up scheduling algorithm for minimizing energy consumption while limiting maximum delay in a mesh sensor network. IEEE Transactions on Networking, 17(2), 570–581.CrossRefGoogle Scholar
  28. 28.
    Kim, J., Lin, X., & Shroff, N. B. (2010). Minimizing the delay and maximizing lifetime for wireless sensor networks with anycast. IEEE Transactions on Networking, 12(2), 515–528.Google Scholar
  29. 29.
    Jurdak, R., Ruzzelli, A. G., & Ohare, G. M. P. (2010). Radio sleep mode optimization in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(7), 955–968.CrossRefGoogle Scholar
  30. 30.
    Poorter, E. D., Troubleyn, E., Moerman, I., & Demeester, P. (2011). IDRA: A flexible system architecture for next generation wireless sensor networks. Wireless Networks, 17(6), 1423–1440.CrossRefGoogle Scholar
  31. 31.
    IEEE 802.15 task group 4e: wireless medium access control and physical layer specifications for low-Rate wireless personal area networks, IEEE. (2010). http://www.ieee802.org/15/pub/TG4e.html.
  32. 32.
    Wheeler, A. (2007). Commercial applications of wireless sensor networks using ZigBee. IEEE Communications Magazine, 45(4), 70–77.CrossRefGoogle Scholar
  33. 33.
    Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar
  34. 34.
    Chen, G., Li, C., Ye, M., & Wu, J. (2009). An unequal cluster-based routing protocol in wireless sensor networks. Wireless Networks, 15(2), 193–207.CrossRefGoogle Scholar
  35. 35.
    ISA-100.11a-2009. (2009). Wireless systems for industrial automation: Process control and related applications.Google Scholar
  36. 36.
    Di Marco, P., Park, P., Fischione, C., & Johansson, K. H. (2012). Analytical modelling of multi-hop IEEE 802.15.4 networks. IEEE Transactions on Vehicular Technology, 61(7), 3191–3208.CrossRefGoogle Scholar
  37. 37.
    Zhang, W., Branicky, M. S., & Phillips, S. M. (2001). Stability of networked control systems. IEEE Control Systems Magazine, 21(1), 84–99.CrossRefGoogle Scholar
  38. 38.
    Pollin, S., Ergen, M., Ergen, S. C., Bougard, B., Perre, L. V., Moerman, I., et al. (2008). Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Transactions on Wireless Communication, 7(9), 3359–3371.CrossRefGoogle Scholar
  39. 39.
    Zhai, H., Kwon, Y., & Fang, Y. (2004). Performance analysis of IEEE 802.11 MAC protocols in wireless LANs: Research articles. Wireless Communications and Mobile Computing, 4(8), 917–931.CrossRefGoogle Scholar
  40. 40.
    Wu, H., Peng, Y., Long, K., Cheng, S., & Ma, J. (2002). Performance of reliable transport protocol over IEEE 802.11 wireless LAN: Analysis and enhancement. In IEEE INFOCOM.Google Scholar
  41. 41.
    Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRefGoogle Scholar
  42. 42.
    Papoulis, A. (1991). Probability, random variables, and stochastic processes. New York: Mc Graw Hill.Google Scholar
  43. 43.
    Råde, L., & Westergren, B. (1999). Mathematics handbook for science and engineering. Berlin: Springer.MATHGoogle Scholar
  44. 44.
  45. 45.
    Fischione, C., Coleri Ergen, S., Park, P., Johansson, K. H., & Sangiovanni-Vincentelli, A. (2009). Medium access control analytical modeling and optimization in unslotted IEEE 802.15.4 wireless sensor networks. Sweden: KTH. http://www.ee.kth.se, TRITA-EE 2009:005.
  46. 46.
    Bertsekas, D. P. (2004). Nonlinear programming. Belmont: Athena Scientific.Google Scholar
  47. 47.
    Fischione, C., (2011). Fast-Lipschitz optimization with wireless sensor networks applications. IEEE Transactions on Automatic Control, 56(10), 2319–2331.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.ACCESS Linnaeus Center, Electrical EngineeringRoyal Institute of TechnologyStockholmSweden
  2. 2.EECS DepartmentUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Electrical and Electronics EngineeringKoc UniversityIstanbulTurkey

Personalised recommendations