Wireless Networks

, Volume 19, Issue 6, pp 1203–1216 | Cite as

Cognitive radio resource management exploiting heterogeneous primary users and a radio environment map database

  • Anna VizzielloEmail author
  • Ian F. Akyildiz
  • Ramon Agustí
  • Lorenzo Favalli
  • Pietro Savazzi


The efficient utilization of radio resources is a fundamental issue in cognitive radio (CR) networks. Thus, a novel cognitive radio resource management (RRM) is proposed to improve the spectrum utilization efficiency. An optimization framework for RRM is developed that makes the following contributions: (i) considering heterogeneous primary users (PUs) with multiple features stored in a radio environment map database, (ii) allowing variable CR demands, (iii) assuring interference protection towards PUs. After showing that the optimal solution is computationally infeasible, a suboptimal solution is consequently proposed. Performance evaluation is conducted in terms of total achieved data rate and satisfaction of CR requirements.


Radio resource management Optimization Interference protection Cognitive radio networks 


  1. 1.
    Akyildiz, I. F., Lee, W. -Y., Vuran, M. C., & Mohanty S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks 50(13), 2127–2215.zbMATHCrossRefGoogle Scholar
  2. 2.
    Canberk, B., Akyildiz, I. F., & Oktug, S. (2011). Primary user activity modeling using first-difference filter clustering and correlation in cognitive radio networks. IEEE/ACM Transactions on Networking, 19(1), 170–183.CrossRefGoogle Scholar
  3. 3.
    Fitzek, F. H. P., & Reisslein, M. (2001). MPEG-4 and H.263 video traces for network performance evaluation. IEEE Network, 15(6), 40–54.CrossRefGoogle Scholar
  4. 4.
    Hou, Y. T., Shi, Y., & Sherali, H. D. (2008). Spectrum sharing for multi-hop networking with cognitive radios. IEEE Journal on Selected Areas in Communications, 26(1), 146–155.CrossRefGoogle Scholar
  5. 5.
    Hu, D., & He, L. (2010). Pilot design for channel estimation in OFDM-based cognitive radio systems. IEEE International Conference on Communications, ICC 2010, pp. 1–5.Google Scholar
  6. 6.
    Iyengar, R., Kar, K., & Sikdar, B. (2006). Scheduling algorithms for PMP operation in IEEE 802.16 networks. RAWNET 2006 workshop, in Conjunction with WiOPT 06, Boston, MA.Google Scholar
  7. 7.
    McHenry, M., & McCloskey, D. (2004). New York City spectrum occupancy measurements September 2004.Google Scholar
  8. 8.
    Mohanram, C., & Bhashyam, S. (2005). A sub-optimal joint subcarrier and power allocation algorithm for multiuser OFDM. IEEE Communications Letters, 9(8), 685–687.CrossRefGoogle Scholar
  9. 9.
    Petrova, M., & Mahonen, P. (2007). Cognitive resource manager: a cross-layer architecture for implementing cognitive radio networks. In: F. Fittzek, & M. Katz (Eds.), Cognitive wireless networks. Berlin: Springer.Google Scholar
  10. 10.
    van de Beek, J., Cai, T., Grimoud, S., Mhnen, P., Nasreddine, J., Riihijrvi, J., et al. (2012). How a layered REM architecture brings cognition to today’s mobile networks. IEEE Wireless Communication Magazine, 19(4), 17–24.Google Scholar
  11. 11.
    Vizziello, A., Akyildiz, I. F., Agusti, R., Favalli, L., & Savazzi, P. (2010). OFDM signal type recognition and adaptability effects in cognitive radio networks. In Proceedings of the IEEE GLOBECOM 2010. Miami, Florida, USA.Google Scholar
  12. 12.
    Vizziello, A., & Perez-Romero, J. (2011). System architecture in cognitive radio networks using a radio environment map. In Proceedigs of the CogART 2011, (invited paper). Barcelona, Spain.Google Scholar
  13. 13.
    Vizziello, A., Akyildiz, I. F., Agusti, R., Favalli, L., & Savazzi, P. (2011). Cognitive radio resource management exploiting heterogeneous primary users. In Proceedings of the IEEE GLOBECOM 2011. Houston, Texas, USA.Google Scholar
  14. 14.
    Wang, B., & Liu, K. J. R. (Feb. 2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.CrossRefGoogle Scholar
  15. 15.
    Zhao, Y., Morales, L., Gaeddert, J., Bae, K., Um, J. -S., & Reed, J. (2007). Applying radio environment maps to cognitive wireless regional area networks. In Proceedings of the IEEE DySPAN 2007. pp. 115–118.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Anna Vizziello
    • 1
    Email author
  • Ian F. Akyildiz
    • 2
    • 3
    • 4
  • Ramon Agustí
    • 5
  • Lorenzo Favalli
    • 1
  • Pietro Savazzi
    • 1
  1. 1.Dipartimento di Ingegneria Industriale e dell’InformazioneUniversità degli Studi di PaviaPaviaItaly
  2. 2.Telecommunication Engineering School (ETSETB)Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  3. 3.Department of Information TechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Broadband Wireless Networking Laboratory (BWNLab), School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  5. 5.Department of Signal Theory and Communications (TSC)Universitat Politècnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations