Wireless Networks

, Volume 19, Issue 7, pp 1497–1509 | Cite as

Cross-layer analysis of protocol delay in mobile devices receiving BCMCS

  • Kyungtae Kang
  • Juyoung Park
  • Junbeom Hur


Broadcast and multicast services allow the high-speed delivery of multimedia content to multiple subscribers over CDMA2000 wireless networks. This relies on a high-rate broadcast packet data system with an air interface governed by two interacting protocols: the medium access control (MAC) protocol specifies the methods of multiplexing and of forward error correction used to reduce the radio link error-rate seen by the higher layers; and the security protocol specifies the procedures used to encrypt and decrypt content, following the Advanced Encryption Standard. We investigated the mutual effect of these protocols, in the context of an ARM9-based mobile platform, and their influence on delay. This allowed us to propose a novel analytic model that can predict the total delay by summing the separate but related delays incurred by implementations of the MAC and security protocols with particular parameters. This cross-layer model includes the characteristics of error control in the MAC layer and the varying condition of the fading channel in the physical layer. We can use this model to estimate the size of data buffers that mobiles require to provide a seamless multimedia service.


Advanced encryption standard Cross-layer timing analysis Mobile devices Broadcast and multicast services 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A1001835).


  1. 1.
    Wang, J., Sinnarajaj, R., Chen, T., Wei, Y., & Tiedemann, E. (2004). Broadcast and multicast services in CDMA2000. IEEE Communications Magazine 42(2), 76–82.CrossRefGoogle Scholar
  2. 2.
    Kang, K., Cho, Y., Cho, J., & Shin, H. (2007). Scheduling scalable multimedia streams for 3G cellular broadcast and multicast services. IEEE Transactions on Vehicular Technology 56(5), 2655–2672.CrossRefGoogle Scholar
  3. 3.
    Broadcast-Multicast Service Security Framework (2003). 3GPP2 Std. S.R0083 Rev. 1.0.Google Scholar
  4. 4.
    Enhanced Cryptographic Algorithms (2005) 3GPP2 Std. S.S0055 Rev. 2.0.Google Scholar
  5. 5.
    Daemen, J., & Rijmen, V. (2002). The design of Rijndael: AES—the advanced encryption standard. Berlin: Springer .CrossRefGoogle Scholar
  6. 6.
    Daemen, J., & Rijmen, V. (2000). The block cipher Rijndael, lecture notes in computer science 1820, 277–284.Google Scholar
  7. 7.
    Agashe, P., Rezaiifar, R., & Bender, P. (2004). CDMA2000 high rate broadcast packet data air interface design. IEEE Communication Magazine 42(2), 83–89.CrossRefGoogle Scholar
  8. 8.
    Blahut, R. E. (1983). Theory and practice of error control codes. Boston: Addison-Wesley.MATHGoogle Scholar
  9. 9.
    Chen, T., Wei, Y., Tiedemann, E. G., Sinnarajah, R., & Wang, J. (2002). A high-rate broadcast channel design for CDMA2000. In Proceedings of IEEE GLOBECOM 1, 605–609.Google Scholar
  10. 10.
    Benedetto, S., & Montorsi, G. (1996). Unveiling turbo-codes: Some results on parallel concatenated coding schemes. IEEE Transactions on Information Theory 42(2):409–429.CrossRefMATHGoogle Scholar
  11. 11.
    Zorzi, M., Rao, R. R., & Milstein, L. B. (1997). ARQ error control on fading mobile radio channels. IEEE Transactions on Vehicular Technology 46(2), 445–455.CrossRefGoogle Scholar
  12. 12.
    Zorzi, M., Rao, R. R., & Milstein, L. B. (1998). Error statistics in data transmission over fading channels. IEEE Transactions on Communications 46(11), 1468–1477.CrossRefGoogle Scholar
  13. 13.
    Parkvall, S., Englund, E., Lundevall, M., & Torsner, J. (2006). Evolving 3G mobile systems: Broadband and broadcast services in WCDMA. IEEE Communication Magazine 44(2), 30–36.CrossRefGoogle Scholar
  14. 14.
    Hartung, F., Horn, U., Huschke, J., Kampmann, M., Lohmar, T., & Lundevall, M. (2007). Delivery of broadcast services in 3G networks. IEEE Transactions on Broadcasting 53(1), 188–199.CrossRefGoogle Scholar
  15. 15.
    Correia, A. M. C., Silva, J. C. M., Souto, N. M. B., Silva, A. C. L., Boal, A. B., & Soares, A. B. (2007). Multi-resolution broadcast/multicast systems for MBMS. IEEE Transactions on Broadcasting 53(1) 224–234.CrossRefGoogle Scholar
  16. 16.
    Luby, M., Gasiba, T., Stockhammer, T., & Watson, M. (2007). Reliable multimedia download delivery in cellular broadcast networks. IEEE Transactions on Broadcasting 53(1), 235–246.CrossRefGoogle Scholar
  17. 17.
    Provvedi, L., Rattray, C., Hofmann, J., & Parolari, S. (2004). Provision of MBMS over the GERAN: Technical solutions and performance. In Proceedings of IEE international conference on 3G mobile communication technologies, pp. 494–498.Google Scholar
  18. 18.
    Jenkac, H., Liebl, G., Stockhammer, T., & Xu, W. (2004) Flexible outer Reed–Solomon coding on RLC layer for MBMS over GERAN. In Proceedings of IEEE vehicular technology conference 5, pp. 2777–2781.Google Scholar
  19. 19.
    Atici, C., & Sunay, M. O. (2007). High data-rate video broadcasting over 3G wireless systems. IEEE Transactions on Broadcasting 53(1), 212–223.CrossRefGoogle Scholar
  20. 20.
    Kang, K., Kim, C., Noh, D. K. & Ryu, J. (2008). Modeling the execution time of Reed-Solomon decoding on an ARM9-based mobile platform. In Proceedings of ICCCN.Google Scholar
  21. 21.
    Kang, K., & Noh, D. K. (2009). Stochastic timing analysis of the AES cipher algorithm over a correlated fading channel. In Proceedings of ICCCN.Google Scholar
  22. 22.
    Kang, K., Kim, C., & Park, K. (2010). A hybrid architecture for delay analysis of interleaved FEC on mobile platforms. IEEE Transactions on Vehicular Technology 59(4), 2087–2092.CrossRefGoogle Scholar
  23. 23.
    Zhang, X., & Parhi, K. K. (2002). Implementation approaches for the advanced encryption standard algorithm. IEEE Circuits and Systems Magazine 2(4), 24–46.CrossRefGoogle Scholar
  24. 24.
    Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., & Piuri, V. (2003). Error analysis and detection procedures for a hardware implementation of the advanced encryption standard. IEEE Transactions on Computers 52(4), 492–505.CrossRefGoogle Scholar
  25. 25.
    Bertoni, G., Breveglieri, L., Fragneto, P., Macchetti, M., & Marchesin, S. (2002). Efficient software implementation of AES on 32-bit olatforms, Lecture Notes in Computer Science 2523, 159–171.Google Scholar
  26. 26.
  27. 27.
    IAR Embedded Workbench for ARM,
  28. 28.
    Proakis, J. G., & Salehi, M. (2008). Digital communications. New York: McGraw-Hill.Google Scholar
  29. 29.
    Jakes, W. C. (1994). Microwave mobile communications. Hoboken, NJ: Wiley-IEEE Press.CrossRefGoogle Scholar
  30. 30.
    Parry, R. (2002). CDMA2000 1xEV-DO. IEEE Potentials, 21(4):10–13CrossRefGoogle Scholar
  31. 31.
    Coded Modulation Library,

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringHanyang UniversitySeoulKorea
  2. 2.School of Computer Science and EngineeringChung-Ang UniversitySeoulKorea

Personalised recommendations