Wireless Networks

, Volume 19, Issue 4, pp 547–558 | Cite as

Exploring the intra-frame energy conservation capabilities of the horizontal simple packing algorithm in IEEE 802.16e networks: an analytical approach

  • Thomas D. Lagkas
  • Panagiotis G. Sarigiannidis
  • Malamati Louta
  • Periklis Chatzimisios
Article

Abstract

The power saving capabilities of the mobile devices in broadband wireless networks constitute a challenging research topic that has attracted the attention of researchers recently, while it needs to be addressed at multiple layers. This work provides a novel analysis of the intra-frame energy conservation potentials of the IEEE 802.16e network. Specifically, the power saving capabilities of the worldwide interoperability for microwave access downlink sub-frame are thoroughly studied, employing the well-known simple packing algorithm as the mapping technique of the data requests. The accurate mathematical model, cross-validated via simulation, reveals the significant ability to conserve energy in this intra-frame fashion under different scenarios. To the best of our knowledge, this is the first work providing intra-frame power-saving potentials of IEEE 802.16 networks. Additionally, this is the first study following an analytic approach.

Keywords

IEEE 802.16 Downlink mapping Intra-frame power saving Sleep slots WiMAX 

References

  1. 1.
    IEEE 802.16 Workgroup. (2004). Part 16: Air interface for fixed broadband wireless access systemsStandard for local and metropolitan area networks.Google Scholar
  2. 2.
    IEEE 802.16e Workgroup. (2005). Part 16: Air interface for mobile broadband wireless access systemsAmendment for physical and medium access control layers for combined fixed and mobile operation in licensed bands.Google Scholar
  3. 3.
    Andrews, J., Ghosh, A., & Muhamed, R. (2007). Fundamentals of WiMAX: Understanding broadband wireless networking. NJ: Prentice Hall.Google Scholar
  4. 4.
    Xiao, Y. (2005). Energy saving mechanism in the IEEE 802.16e wireless MAN. IEEE Communications Letters, 9(7), 595–597.CrossRefGoogle Scholar
  5. 5.
    Tsao, S.-L., & Chen, Y.-L. (2008). Energy-efficient packet scheduling algorithms for real-time communications in a mobile WiMAX system. Elsevier Computer Communications, 31(10), 2350–2359.CrossRefGoogle Scholar
  6. 6.
    Baker, A. M., Ng, C. K., Noordin, N. K., Mustafa, A., & Akbari, A. (2010). An optimized energy saving mechanism in IEEE 802.16e mobile WiMAX systems. Journal of High Speed Networks, 17(3), 147–161.Google Scholar
  7. 7.
    Kim, M.-G., Choi, J. Y., & Kang, M. (2008). Adaptive power saving mechanism considering the request period of each initiation of awakening in the IEEE 802.16e system. IEEE Communications Letters, 12(2), 106–108.CrossRefGoogle Scholar
  8. 8.
    Wong, G. K. W., Zhang, Q., & Tsang, D. H. K. (2010). Switching cost minimization in the IEEE 802.16e mobile WiMAX sleep mode operation. Wireless Communications and Mobile Computing, 10(12), 1576–1588.CrossRefGoogle Scholar
  9. 9.
    Hsu, C.-H., Feng, K.-T., & Chang, C.-J. (2010). Statistical control approach for sleep-mode operations in IEEE 802.16m systems. IEEE Transactions on Vehicular Technology, 59(9), 4453–4466.CrossRefGoogle Scholar
  10. 10.
    Wong, G. K. W., Zhang, Q., & Tsang, D. H. K. (2009). Joint optimization of power saving mechanism in the IEEE 802.16e mobile WiMAX. In IEEE global telecommunications conference (GLOBECOM 209), pp. 1–6.Google Scholar
  11. 11.
    Hsu, C.-H., & Feng, K.-T. (2009). A statistical power-saving mechanism for IEEE 802.16 networks. In IEEE international symposium on personal, indoor and mobile radio communications (PIMRC 2009), pp. 27–31.Google Scholar
  12. 12.
    Datasheet: SQN1130 system-on-chip (SoC) for WiMAX mobile stations. (2007). Sequans Communications.Google Scholar
  13. 13.
    Ben-Shimol, Y., Kitroser, I., & Dinitz, Y. (2006). Two-dimensional mapping for wireless OFDMA systems. IEEE Transactions on Broadcasting, 52(3), 388–396.CrossRefGoogle Scholar
  14. 14.
    So-In, C., Jain, R., & Al Tamimi, A.-K. (2009). eOCSA: An algorithm for burst mapping with strict QoS requirements in IEEE 802.16e mobile WiMAX networks. In 2nd IFIP wireless days (WD 2009), pp. 1–5.Google Scholar
  15. 15.
    Sarigiannidis, P. G., Papadimitriou, G. I., Nicopolitidis, P., Obaidat, M. S., & Pomportsis, A. (2010). A novel adaptive mapping scheme for IEEE 802.16 mobile downlink framing. In IEEE global telecommunications conference (GLOBECOM 2010), pp. 1–5.Google Scholar
  16. 16.
    Perez-Costa, X., Favaro, P., Zubow, A., Camps, D., & Arauz, J. (2008). On the challenges for the maximization of radio resources usage in WiMAX networks. In 5th IEEE consumer communications and networking conference (CCNC 2008), pp. 890–896.Google Scholar
  17. 17.
    Hurni, P., & Braun, T. (2008). Increasing throughput for WiseMAC. In IEEE wireless on demand network systems and services (WONS 2008), pp. 105–108.Google Scholar
  18. 18.
    Langendoen, K., & Halkes, G. (2006). Energy-efficient medium access control. In R. Zurawski (Eds.), Embedded systems handbook (Chap. 34). Boca Raton, FL: CRC Press.Google Scholar
  19. 19.
    Chen, U., Smavatkul, N., & Emeott, S. (2004). Power management for VoIP over IEEE 802.11 WLAN. In IEEE wireless communications and networking conference (WCNC 2004), Vol. 3, pp. 1648–1653.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Thomas D. Lagkas
    • 1
  • Panagiotis G. Sarigiannidis
    • 1
  • Malamati Louta
    • 1
  • Periklis Chatzimisios
    • 2
  1. 1.Department of Informatics and Telecommunications EngineeringUniversity of Western MacedoniaKozaniGreece
  2. 2.Department of InformaticsAlexander TEIThessalonikiGreece

Personalised recommendations