Skip to main content
Log in

Intelligent beaconless geographical forwarding for urban vehicular environments

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

A Vehicular Ad hoc Network is a type of wireless ad hoc network that facilitates ubiquitous connectivity between vehicles in the absence of fixed infrastructure. Source based geographical routing has been proven to perform well in unstable vehicular networks. However, these routing protocols leverage beacon messages to update the positional information of all direct neighbour nodes. As a result, high channel congestion or problems with outdated neighbour lists may occur. To this end, we propose a street-aware, Intelligent Beaconless (IB) geographical forwarding protocol based on modified 802.11 Request To Send (RTS)/ Clear To Send frames, for urban vehicular networks. That is, at the intersection, each candidate junction node leverage digital road maps as well as distance to destination, power signal strength of the RTS frame and direction routing metrics to determine if it should elect itself as a next relay node. For packet forwarding between Intersections, on the other hand, the candidate node considers the relative direction to the packet carrier node and power signal strength of the RTS frame as routing metrics to elect itself based on intelligently combined metrics. After designing the IB protocol, we implemented it and compared it with standard protocols. The simulation results show that the proposed protocol can improve average delay and successful packet delivery ratio in realistic wireless channel conditions and urban vehicular scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wireless acess for vehicular environment (wave), October 2010. http://standards.ieee.org/findstds/standard/1609.3-2010.html.

  2. Perkins, C. E., Royer, E. M. (1999). Ad-hoc on-demand distance vector routing. In Proceedings of the 1999 WMCSA workshop on mobile computing systems and application (pp. 90–101). New Orleans, LA: IEEE, 25–26 February 1999.

  3. Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. Mobile Computing, 353, 153–181.

    Article  Google Scholar 

  4. Karp, B., & Kung, H. T. (2000). Gpsr: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 2000 ACM international conference on mobile computing and networking (pp. 243–254). Boston, MA: ACM, 06–11 August 2000.

  5. Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., & Mauve M. (2003). A routing strategy for vehicular ad hoc networks in city environments. In Proceedings of the 2003 IEEE international symposium on intelligent vehicles (pp. 156–161). Columbus, OH: IEEE, 9–11 June 2003.

  6. Lochert, C., Mauve, M., Fußler, H., & Hartenstein, H. (2005). Geographic routing in city scenarios. Mobile Computing and Communications Review, 9(1), 69–72.

    Article  Google Scholar 

  7. Seet, B. C., Liu, G., Lee, B. S., Foh, C. H., Wong, K. J., & Lee, K. K. (2004). A-star: A mobile ad hoc routing strategy for metropolis vehicular communications. In Proceedings of the 2004 international conference on networking technologies, services, and protocols (pp. 989–999). Athens: Springer, 9–14 May 2004.

  8. Wu, H., Fujimoto, R., Guensler, R., Hunter, M. (2004). Mddv: A mobility-centric data dissemination algorithm for vehicular networks. In Proceedings of the 2004 ACM international workshop on vehicular ad hoc networks (pp. 56). Philadelphia, PA: ACM, 01–01 October 2004.

  9. Chen, Y. S., Lin, Y. W., & Pan, C. Y. (2010). Dir: Diagonal-intersection-based routing protocol for vehicular ad hoc networks. Telecommunication Systems, 10(1007), 1–18.

    Google Scholar 

  10. Ghafoor, K. Z., Abu Bakar, K., Van Eenennaam, E., Khokhar, R. H., & Gonzalez, A. J. (2011). A fuzzy logic approach to beaconing for vehicular ad hoc networks. International Journal of Telecommunication Systems, 53(4), 330–342.

    Google Scholar 

  11. Jerbi, M., Senouci, S. M., Rasheed, T., & Ghamri-Doudane, Y. (2009). Towards efficient geographic routing in urban vehicular networks. IEEE Transactions on Vehicular Technology, 58(9), 5048–5059.

    Article  Google Scholar 

  12. Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). Vanet routing on city roads using real-time vehicular traffic information. IEEE Transactions on Vehicular Technology, 58(7), 3609–3626.

    Article  Google Scholar 

  13. Cheng, P. C., Lee, K. C., Gerla, M., & Härri, J. (2010). Geodtn+nav: Geographic dtn routing with navigator prediction for urban vehicular environments. Mobile Networks and Applications, 15(1), 61–82.

    Article  Google Scholar 

  14. Lee, K. C., Cheng, P. C., & Gerla, M. (2010). Geocross: A geographic routing protocol in the presence of loops in urban scenarios. Ad Hoc Networks, 8(5), 474–488.

    Article  Google Scholar 

  15. Ghafoor, K. Z., Abu Bakar, K., Lee, K., & Salleh, S. (2011). Fuzzy logic-assisted geographical routing over vehicular ad hoc networks. International Journal of Innovative Computing Information and Control, 8(6), 5095–5120

  16. Chawla, M., Goel, N., Kalaichelvan, K., Nayak, A., & Stojmenovic, I. (2006). Beaconless position based routing with guaranteed delivery for wireless ad-hoc and sensor networks. Ad-Hoc Networking, 212, 61–70.

    Article  Google Scholar 

  17. Fußler, H., Hartenstein, H., Widmer, J., Mauve, M., & Effelsberg, W. (2004). Contention-based forwarding for street scenarios. In Proceedings of the 2004 WIT international workshop in intelligent transportation (pp. 15–21). Hamburg: Citeseer, 23–24 March 2004.

  18. Ruhrup, S., Kalosha, H., Nayak, A., & Stojmenovic, I. (2010) Message-efficient beaconless georouting with guaranteed delivery in wireless sensor, ad hoc, and actuator networks. IEEE Transactions on Networking, 18(1), 95–108.

    Article  Google Scholar 

  19. Barr, R. (2004). An efficient, unifying approach to simulation using virtual machines, PhD thesis. Citeseer: Cornell University.

  20. WLAN-MAC. (1999). Wireless lan medium access control (mac) and physical layer specifications. IEEE Computer Society. http://standards.ieee.org/getieee802/802.11.html.

  21. Ke, C.-H., Wei, C.-C., Lin, K. W., & Ding, J.-W. (2011). A smart exponential-threshold-linear backoff mechanism for ieee 802.11 wlans. International Journal of Communication Systems, 24(8), 1–16.

    Article  Google Scholar 

  22. Sadiq, A. S., Abu Bakar, K., & Ghafoor, K. Z. (2011). A fuzzy logic approach for reducing handover latency in wireless networks. Network Protocols and Algorithms, 2(4), 61–87.

    Google Scholar 

  23. Egoh, K., & De, S. (2006). A multi-criteria receiver-side relay election approach in wireless ad hoc networks. In Proceedings of the 2006 IEEE international conference on military communications (pp. 1–7). Bellevue, WA: IEEE, 23–25 October 2006.

  24. inSSIDer. (2011). Wi-fi scanner software. http://www.metageek.net/products/inssider.

  25. Choffnes, D. R., & Bustamante, F. E. (2005). An integrated mobility and traffic model for vehicular wireless networks. In Proceedings of the 2005 ACM international workshop on vehicular ad hoc networks (pp. 69–78). Cologne: ACM, 02–02 September 2005.

  26. Rappaport, T.S. (1996). Wireless Communications: principles and practice, 2nd. ed. New Jersey: Prentice Hall PTR.

    Google Scholar 

  27. Wang, X., Yang, Y., & An, J. (2009). Multi-metric routing decisions in vanet. In Proceedings of the 2009 IEEE international conference on dependable, autonomic and secure computing (pp. 551–556). Chengdu: IEEE, 12–14 December 2009.

  28. Lee, K. C., Lee, U., & Gerla, M. (2010). Geo-opportunistic routing for vehicular networks. IEEE Communication Magazine, 10, 164–170.

    Article  Google Scholar 

  29. Jarupan, B., & Ekici, E. (2009). Location-and delay-aware cross-layer communication in v2i multihop vehicular networks. IEEE Communications Magazine, 47(11), 112–118.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous reviewers for their constructive comments in improving the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayhan Zrar Ghafoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghafoor, K.Z., Abu Bakar, K., Lloret, J. et al. Intelligent beaconless geographical forwarding for urban vehicular environments. Wireless Netw 19, 345–362 (2013). https://doi.org/10.1007/s11276-012-0470-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0470-z

Keywords

Navigation