Wireless Networks

, Volume 19, Issue 2, pp 219–236 | Cite as

Distributed Hash table-based routing and data management in wireless sensor networks: a survey

Article

Abstract

Recent advances in Wireless Sensor Networks (WSN) have led to a great breakthrough in sensors design and features. These technological novelties have brought additional challenges to WSN. Sensornets are seeking for new approaches for efficient data routing and management. The last few years have witnessed the emergence of several approaches that build Distributed Hash Tables (DHTs) over WSN. DHTs are initially conceived for efficient data lookup in large-scale wired networks. The main objective of this combination is to manage location-independent data and nodes identification. DHT mapping over WSN brings however new challenges. This paper presents an analytical survey on applying DHT techniques in WSNs. It describes existing DHT-based routing and data management protocols and includes a detailed classification of them.

Keywords

WSN DHT Routing protocols Data management 

References

  1. 1.
    Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.CrossRefGoogle Scholar
  2. 2.
    Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRefGoogle Scholar
  3. 3.
    Lewis, F. L. (2004). Wireless sensor networks. Smart environments: Technologies, protocols, and applications. New York: Wiley.Google Scholar
  4. 4.
    Yingshu, L., & My, T. (Eds.) (2008). Wireless sensor networks and applications. Springer series on signals and communication technology.Google Scholar
  5. 5.
    Kuorilehto, M., Hännikäinen, M., & Hämäläinen, T. D. (2005). A survey of application distribution in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 38(5), 774–788.Google Scholar
  6. 6.
    Neves, P., Stachyra, M., & Rodrigues, J. (2008). Application of wireless sensor networks to healthcare promotion. Journal of Communications Software and Systems, 4(3), 181–190.Google Scholar
  7. 7.
    Chong, C. Y., & Kumar, S. (2003). Sensor networks: Evolution, opportunities, and challenges. Proceedings of the IEEE, 91(8), 1247–1256.CrossRefGoogle Scholar
  8. 8.
    Puccinelli, D., & Haenggi, M. (2005). Wireless sensor networks: Applications and challenges of ubiquitous sensing. IEEE Circuits and Systems Magazine, 5(3), 19–31.CrossRefGoogle Scholar
  9. 9.
    Akyildiz, I. F., & Kasimoglu, I. H. (2004). Wireless sensor and actor networks: Research challenges. Ad Hoc Networks, 2(4), 351–367.CrossRefGoogle Scholar
  10. 10.
    Wehrle, K., Gtz, S., & Rieche, S. (2005). Distributed Hash tables. In R. Steinmetz, K. Wehrle (Eds.), Peer-to-Peer systems and applications (Chapter 7, pp. 79–93). Berlin, Heidelberg: Springer.Google Scholar
  11. 11.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of the ACM conference of the Special Interest Group on Data Communication, San Diego, CA.Google Scholar
  12. 12.
    Rowstron, A., & Druschel, P. (2001). Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In Proceedings of IFIP/ACM international conference in distributed systems platforms, Heidelberg, Germany.Google Scholar
  13. 13.
    Ratnasamy, S., Francis, P., Handley, M., Richard, K., & Schenker, S. (2001). A scalable content addressable network. In Proceedings of the ACM conference of the Special Interest Group on Data Communication, San Diego, CA.Google Scholar
  14. 14.
    Heinzelman, W., Kulik, J., & Balakrishnan, H. (1999). Adaptive protocols for information dissemination in wireless sensor networks. In Proceedings of the 5th annual ACM/IEEE international conference on mobile computing and networking, Seattle, WA.Google Scholar
  15. 15.
    Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Proceedings of the 6th annual ACM/IEEE international conference on mobile computing and networking, Boston, MA.Google Scholar
  16. 16.
    Estrin, D., Govindan, R., John, H., & Satish, K. (1999). Next century challenges: Scalable coordination in sensor networks. In Proceedings of the 5th annual ACM/IEEE international conference on mobile computing and networking, Seattle, WA.Google Scholar
  17. 17.
    Braginsky, D., & Estrin, D. (2002). Rumor routing algorithm for sensor networks. In Proceedings of the first workshop on sensor networks and applications, Atlanta, GA.Google Scholar
  18. 18.
    Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless sensor networks. In Proceedings of the Hawaii international conference system sciences, Hawaii.Google Scholar
  19. 19.
    Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power Efficient GAthering in Sensor Information Systems. In Proceedings of the IEEE aerospace conference, Big Sky, Montana.Google Scholar
  20. 20.
    Manjeshwar, A., & Agrawal, D. P. (2001). TEEN: A protocol for enhanced efficiency in wireless sensor networks. In Proceedings of the international workshop on parallel and distributed computing issues in wireless networks and mobile computing, San Francisco, CA.Google Scholar
  21. 21.
    Manjeshwar, A., & Agrawal, D. P. (2002). APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In Proceedings of the 2nd international workshop on parallel and distributed computing issues in wireless networks and mobile computing, Ft. Lauderdale, FL.Google Scholar
  22. 22.
    Younis, M., Youssef, M. & Arisha, K. (2002). Energy-aware routing in cluster-based sensor networks. In Proceedings of the 10th IEEE/ACM international symposium on modeling, analysis and simulation of computer and telecommunication systems, Fort Worth, TX.Google Scholar
  23. 23.
    Xu, Y., Heidemann, J., & Estrin, D. (2001). Geography-informed energy conservation for ad hoc routing. In Proceedings of the 7th annual ACM/IEEE international conference on mobile computing and networking, Rome, Italy.Google Scholar
  24. 24.
    Yu, Y., Estrin, D., & Govindan, R. (2001). Geographical and energy-aware routing: A recursive data dissemination protocol for wireless sensor networks. UCLA Computer Science Department technical report, UCLA-CSD TR-01-0023.Google Scholar
  25. 25.
    Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., & Stoica, I. (2003). Geographic routing without location information. In Proceedings of the 9th ACM international conference on mobile computing and networking, San Diego, CA, USA.Google Scholar
  26. 26.
    Landsiedel, O., Lehmann, K., & Wehrle, K. (2005). T-DHT: Topology-based distributed Hash tables. In Proceedings of the fifth IEEE international conference on Peer-to-Peer computing, Konstanz, Germany.Google Scholar
  27. 27.
    Awad, A., Sommer, C., German, R., & Dressler, F. (2008). Virtual cord protocol (VCP): A flexible DHT-like routing service for sensor networks. In Proceedings of the 5th IEEE international conference on mobile ad hoc and sensor systems, Atlanta, Georgia.Google Scholar
  28. 28.
    Almamo, A., & Labiod, H. (2007). ScatterPastry: An overlay routing using a DHT over wireless sensor networks. In Proceedings of the international conference on intelligent pervasive computing, Jeju Island, Korea.Google Scholar
  29. 29.
    Almamou, A., Schiller, J., Labiod, H., & Mesut, G. (2008). A Case for an overlay routing on top of MAC layer for WSN. In Proceedings of the second international conference on sensor technologies and applications, Cap Esterel, France .Google Scholar
  30. 30.
    Stefan, G., Simon, R., & Klaus, W. (2005). Selected DHT algorithms. In Peer-to-Peer systems and applications (Chapter 8, pp. 95–117). Berlin, Heidelberg: Springer.Google Scholar
  31. 31.
    Rhea, S., Geels, D., Roscoe, T., & Kubiatowicz, J.(2004). Handling churn in a DHT. In Proceedings of the annual technical conference USENIX, Boston, MA.Google Scholar
  32. 32.
    Castro, M. C., Kassler, A. J., Chiasserini, C.-F., Casetti, C., & Korpeoglu, I. (2010). Peer-to-Peer overlay in mobile ad-hoc networks. In Handbook of Peer-to-Peer networking (Part 9, pp. 1045–1080).Google Scholar
  33. 33.
    Himabindu, P., Saumitra, M. D., & Y. Charlie, H. (2004). Ekta: An efficient DHT substrate for distributed applications in mobile ad hoc networks. In Proceedings of the 6th IEEE workshop on mobile computing systems and applications, Low Wood, Lake Windermere.Google Scholar
  34. 34.
    Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. In T. Imielinski, H. Korth (Eds.), Mobile computing (Chapter 5, pp. 153–181). Dordrecht: Kluwer.Google Scholar
  35. 35.
    Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., & Viennot L. (2001). Optimized link state routing protocol for ad hoc networks. In Proceedings of IEEE INMIC, Lahore, Pakistan.Google Scholar
  36. 36.
    Perkins, C. E., & Royer E. M. (1999). Ad hoc on-demand distance vector routing. In Proceedings of the second IEEE workshop on mobile computing systems and applications, New Orleans, LA, USA.Google Scholar
  37. 37.
    Cramer, C., & Fuhrmann, T. (2006). Performance evaluation of chord in mobile ad hoc networks. In Proceedings of the ACM international workshop on decentralized resource sharing in mobile computing and networking, CA, USA.Google Scholar
  38. 38.
    Castro, M. C., Villanueva, E., Ruiz, I., Sargento, S., & Kassler, A. J. (2008). Performance evaluation of structured p2p over wireless multi-hop networks. In Proceedings of the 2nd international conference on sensor technologies and applications, Cap Esterel, France.Google Scholar
  39. 39.
    Wiberg, B. (2002). Porting aodv-uu implementation to ns2 and enabling tracebased simulation. Masters thesis, Uppsala University.Google Scholar
  40. 40.
    Awad, A., German, R., & Dressler, F. (2011). Exploiting virtual coordinates for improved routing performance in sensor networks. EEE Transactions on Mobile Computing, 10(9), 1214–1226.CrossRefGoogle Scholar
  41. 41.
    ScatterWeb Homepage, Freie Universitt Berlin, Berlin, http://scatterweb.mi.fu-berlin.de.
  42. 42.
    Charles, E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. In Proceedings of the international conference on communications architectures, protocols and applications, London, UK.Google Scholar
  43. 43.
    Caesar, M., Castro, M., Nightingale, E. B., O’Shea, G. & Rowstron, A. (2006). Virtual ring routing: Network routing inspired by DHTs. In Proceedings of ACM/SIGCOMM, Pisa, Italy.Google Scholar
  44. 44.
    Malkhi, D., Sen, S., Talwar, K., Werneck, R. F., & Wieder, U. (2009). Virtual ring routing trends. In Proceedings of the 23rd international conference on distributed computing, Berlin, Heidelberg.Google Scholar
  45. 45.
    Fuhrmann, T. (2005). The use of scalable source routing for networked sensors. In Proceedings of the 2nd IEEE workshop on embedded networked sensors, Sydney, Australia.Google Scholar
  46. 46.
    Fuhrmann, T., Di, P., Kutzner, K., & Cramer, C. (2006). Pushing Chord into the underlay: Scalable routing for hybrid manets. Universitt Karlsruhe (TH), Technical report.Google Scholar
  47. 47.
    Fuhrmann, T. (2005). Scalable routing for networked sensors and actuators. In Proceedings of the IEEE second annual conference on sensor and ad hoc communications and networks, Santa Clara, California, USA.Google Scholar
  48. 48.
    Ratnasamy, S., Karp, B., Yin, L., & Yu, F. (2002). GHT: A geographic hash table for data-centric storage. In Proceedings of the 1st ACM international workshop on wireless sensor networks and applications, Atlanta, GA, USA.Google Scholar
  49. 49.
    Brad, K., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual ACM/IEEE international conference on mobile computing and networking, Boston, USA.Google Scholar
  50. 50.
    Muneeb, A., & Koen, L. (2007). A case for Peer-to-Peer network overlays in sensor networks. In Proceedings of the international workshop on wireless sensor network architecture, Cambridge, MA, USA.Google Scholar
  51. 51.
    Gnawali, O., Jang, K.-Y., Paek, J., Vieira, M., Govindan, R., Greenstein, B., et al. (2006). The tenet architecture for tiered sensor networks. In Proceedings of the 4th ACM conference on embedded networked sensor systems, Boulder, CO.Google Scholar
  52. 52.
    Sioutas, S., Oikonomou, K., & Papaloukopoulos, G. (2009). Building an efficient P2P overlay for energy-level queries in sensor networks. In Proceedings of the international conference on management of emergent digital ecosystems, Lyon, France.Google Scholar
  53. 53.
    Sioutas, S. (2008). NBDT: An efficient p2p indexing scheme for web service discovery. Journal of Web Engineering and Technologies, 4(1), 95–113.CrossRefGoogle Scholar
  54. 54.
    Fersi, G., Louati, W., & Ben Jemaa, M. (2010). Energy-aware virtual ring routing in wireless sensor networks. Journal of Network Protocols and Algorithms, 2(4), 16–29.Google Scholar
  55. 55.
    Yu, J., Liu, W., & Song, J. (2007). C2WSN: A two-tier Chord overlay serving for efficient queries in large-scale wireless sensor networks. In Proceedings of the 15th international conference on advanced computing and communications, India.Google Scholar
  56. 56.
    Muneeb, A., & Uzmi, Z. (2004). CSN: A network protocol for serving dynamic queries in large-scale wireless sensor networks. In Proceedings of 2nd annual conference on communication networks and services research, Fredericton, NB, Canada.Google Scholar
  57. 57.
    Pengfei, D., Yaser, M., Qing, W., Jorg, W., & Thomas, F. (2007). Application of DHT-inspired routing for object tracking. In Proceedings of the IEEE international conference on mobile adhoc and sensor systems, Pisa, Italy.Google Scholar
  58. 58.
    Di, P., & Fuhrmann, T. (2009). Using link-layer broadcast to improve scalable source routing. In Proceedings of the international conference on wireless communications and mobile computing: Connecting the world wirelessly, Leipzig, Germany.Google Scholar
  59. 59.
    Birnstill, P., & Fuhrmann, T. (2010). Using asymmetric links to improve SSR’s routing performance. In Proceedings of the 9th IFIP annual Mediterranean ad hoc networking workshop, Juan-Les-Pins, France.Google Scholar
  60. 60.
    Albano, M., Chessa, S., Nidito, F., & Pelagatti, S. (2007). Q-NiGHT: Adding QoS to data centric storage in non-uniform sensor networks. In Proceedings of the international conference on mobile data management, Mannheim, Germany.Google Scholar
  61. 61.
    Neumann, J. V. (1951). Various techniques used in connection with random digits. National Bureau of Standards Applied Mathematics Series, 12(1951), 36–38.Google Scholar
  62. 62.
    Awad, A., Shi, L. German, R., & Dressler, F. (2009). Advantages of virtual addressing for efficient and failure tolerant routing in sensor networks. In Proceedings of the sixth IEEE/IFIP international conference on wireless on-demand network systems and services, Snowbird, UT.Google Scholar
  63. 63.
    Dressler, F., Awad, A., German, R., & Mario, G. (2009). Enabling inter-domain routing in virtual coordinate based ad hoc and sensor networks. In Proceedings of ACM MobiCom, poster session, Beijing, China.Google Scholar
  64. 64.
    Dressler, F., Koch, R., & Gerla, M. (2010). Path Heuristics using ACO for inter-domain routing in mobile ad hoc and sensor networks. In Proceedings of the ACM/ICST international conference on bio-inspired models of network, information and computing systems, Boston.Google Scholar
  65. 65.
    Cramer, C., & Fuhrmann, T. (2005). Self-stabilizing ring networks on connected graphs. University of Karlsruhe (TH), Fakultaet fuer Informatik, Technical report 2005-5.Google Scholar
  66. 66.
    Kutzner, K., & Fuhrmann, T. (2007). Using linearization for global consistency in SSR. In Proceedings of 4th international IEEE workshop on hot topics in P2P systems, Long Beach, CA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ghofrane Fersi
    • 1
  • Wassef Louati
    • 1
  • Maher Ben Jemaa
    • 1
  1. 1.Research Unit of Development and Control of Distributed Applications (ReDCAD), Department of Computer Science and Applied Mathematics, National School of Engineers of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations