Wireless Networks

, Volume 18, Issue 8, pp 893–914 | Cite as

Enhancing the performance of TCP over Wi-Fi power saving mechanisms

  • Daniel Camps-MurEmail author
  • Sebastià Sallent-Ribes


The Wi-Fi technology is quickly being adopted by new types of devices that pose stringent requirements in terms of energy efficiency. In order to address these requirements the IEEE 802.11 group developed in the recent years several power saving protocols, that are today widely used among devices like smartphones. In this paper we study, by means of analysis and simulation, the effect that these power saving protocols have on the performance/energy trade-off experienced by long lived TCP traffic. Our study unveils that the efficiency of Wi-Fi power saving protocols critically depends on the bottleneck bandwidth experienced by a TCP connection. Based on the obtained insights, we design and evaluate a novel algorithm, BA-TA, which runs in a Wi-Fi station, does not require any modification to existing 802.11 standards, and using only information available at layer two, improves the performance/energy trade off of long lived TCP connections, whilst also exhibiting a notable performance with Web traffic and TCP Streaming.


Wireless LAN Power saving TCP MAC layer 



This work is partially supported by the Spanish government through project TEC2010-20527-C02-01.


  1. 1.
    Wi-Fi Alliance. (2010). Thirsty for bandwidth, consumers and carriers embrace Wi-Fi phones, 23 March 2010.
  2. 2.
    IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11-2007.Google Scholar
  3. 3.
    Pérez-Costa, X., Camps-Mur, D., & Sashihara, T. (2005). Analysis of the Integration of IEEE 802.11e capabilities in battery limited mobile devices. IEEE Wireless Communications Magazine (WirComMag), special issue on Internetworking Wireless LAN and Cellular Networks, 12(6), 26–32.Google Scholar
  4. 4.
    Pérez-Costa, X., Camps-Mur, D., & Vidal, A. (2007). On the distributed power saving mechanisms of wireless LANs 802.11e U-APSD vs 802.11 Power Save Mode. Computer Networks, 51(9), 2326–2344.CrossRefGoogle Scholar
  5. 5.
    Krashinsky, R., & Balakrishnan, H. (2002). Minimizing energy for wireless web access with bounded slowdown. Proceedings of the eighth Annual International Conference on Mobile Computing and Networking (MOBICOM).Google Scholar
  6. 6.
    Qiao, D., & Shin, K. G. (2005). Smart power saving mode for IEEE 802.11 wireless LANs. Proceedings of IEEE INFOCOM.Google Scholar
  7. 7.
    Agrawal, P., Kumar, A., Kuri, J., Panda, M. K., Navda, V., & Ramjee, R. (2010). OPSM—Opportunistic power save mode for infrastructure IEEE 802.11 WLAN. IEEE international conference on communications workshops (ICC).Google Scholar
  8. 8.
    Anastasi, G., Conti, M., Gregori, E., & Passarella, A. (2008). 802.11 power-saving mode for mobile computing in Wi-Fi hotspots: limitations, enhancements and open issues. Wireless Networks, 14, 6.Google Scholar
  9. 9.
    Tan, E., Guo, L., Chen, S., & Zhang, X. (2007). PSM-throttling: Minimizing energy consumption for bulk data communications in WLANs. IEEE international conference on network protocols, ICNP 2007 (pp. 123–132).Google Scholar
  10. 10.
    Camps Mur, D., Perez-Costa, X., & Sallent Ribes, S. (2009). An adaptive solution for Wireless LAN distributed power saving modes. Computer Networks, 53(18), 3011–3030.Google Scholar
  11. 11.
    Namboodiri, V., & Gao, L. (2010). Energy-efficient VoIP over wireless LANs. IEEE Transactions on Mobile Computing, 9(4), 566–581.Google Scholar
  12. 12.
    Gan, C.-H., & Lin, Y.-B. (2009). An effective power conservation scheme for IEEE 802.11 wireless networks. IEEE Transactions on Vehicular Technology, 58(4), 1920–1929.CrossRefGoogle Scholar
  13. 13.
    Zeng, Z., Gao, Y., & Kumar, P. R. (2011) .SOFA: A sleep-optimal fair-attention scheduler for the power-saving mode of WLANs. International Conference on Distributed Computing Systems (ICDCS).Google Scholar
  14. 14.
    Xie, Y., Luo, X., & Chang, R. K. C. (2009) Centralized PSM: An AP-centric power saving mode for 802.11 infrastructure networks. IEEE Sarnoff Symposium.Google Scholar
  15. 15.
  16. 16.
    Rao, A., Legout, A., Lim, Y.-s., Towsley, D., Barakat, C., & Dabbous, W. Network characteristics of video streaming traffic, In Proceedings of the seventh conference on emerging networking experiments and technologies (CoNEXT ’11) (pp. 12). New York, NY, USA: ACM, Article 25.Google Scholar
  17. 17.
  18. 18.
    Ha, S., Rhee, I., & Xu, L. (2008). CUBIC: A new TCP-friendly high-speed TCP variant. SIGOPS Operating Systems Review, 42(5), 64–74.CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Akamai. (2010). The state of the internet. 3rd quarter 2010.
  21. 21.
    Broadcom 4311AG 802.11a/b/g.
  22. 22.
    Corlett, A., Pullin, D. I., & Sargood, S. (2002). Statistics of one-way internet packet delays. Minneapolis: 53rd IETF.Google Scholar
  23. 23.
    Gettys, J., & Nichols, K. (2011). Bufferbloat: Dark Buffers in the Internet, Queue 9, 11, pp 40 (Nov 2011), 15 pp.Google Scholar
  24. 24.
    Li, T., Leith, D., & Malone D. (2011). Buffer sizing for 802.11-based networks. IEEE/ACM Transactions on Networking, 19(1), 156–169.CrossRefGoogle Scholar
  25. 25.
    Floyd, S., & Henderson, T. (1999). The NewReno modification to TCP’s fast recovery algorithm. RFC Editor.Google Scholar
  26. 26.
    Franklin, G. F., Powell, J. D., & Emami-Naeini, A. Feedback control of dynamic systems. Reading: Adison-Wesley.Google Scholar
  27. 27.
    Acharya, P., Sharma, A., Belding, E. M., Almeroth, K. C., & Papagiannaki, K. (2010). Rate adaptation in congested wireless networks through real-time measurements IEEE Transactions on Mobile Computing, 9(11), 1535–1550.Google Scholar
  28. 28.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.NEC Europe Laboratories in HeidelbergHeidelbergGermany
  2. 2.Polytechnic University of Catalonia (UPC)/i2Cat in BarcelonaBarcelonaSpain

Personalised recommendations