Wireless Networks

, Volume 18, Issue 7, pp 787–798

An evolutionary algorithm for broadcast scheduling in wireless multihop networks



A technical challenge in successful deployment and utilization of wireless multihop networks (WMN) are to make effective use of the limited channel bandwidth. One method to solve this challenge is broadcast scheduling of channel usage by the way of time division multiple access (TDMA). Three evolutionary algorithms, namely genetic algorithm (GA), immune genetic algorithm (IGA) and memetic algorithm (MA) are used in this study to solve broadcast scheduling for TDMA in WMN. The aim is to minimize the TDMA cycle length and maximize the node transmissions with reduced computation time. In comparison to GA and IGA, MA actively aim on improving the solutions and is explicitly concerned in exploiting all available knowledge about the problem. The simulation results on numerous problem instances confirm that MA significantly outperforms several heuristic and evolutionary algorithms by solving well-known benchmark problem in terms of solution quality, which also demonstrates the effectiveness of MA in efficient use of channel bandwidth.


Wireless multihop networks Broadcast scheduling Genetic algorithm Immune genetic algorithm Memetic algorithm 


  1. 1.
    Lloyd, E. L. (2002). Broadcast scheduling for TDMA in wireless multihop networks. In Handbook of wireless networks and mobile computing (pp. 347–370). New York: Wiley.Google Scholar
  2. 2.
    Ephremides, A., & Truong, T. V. (1990). Scheduling broadcasts in multiple radio networks. IEEE Transactions on Communications, 38(4), 456–460.CrossRefGoogle Scholar
  3. 3.
    Wang, G., & Ansari, N. (1997). Optimal broadcast scheduling in packet radio networks using mean filed annealing. IEEE Journal on Selected Areas in Communications, 15(2), 250–260.CrossRefGoogle Scholar
  4. 4.
    Ju, J., & Li, V. O. K. (1998). An optimal topology-transparent scheduling method in multihop packet radio networks. IEEE/ACM Transactions Networking, 6(3), 298–306.CrossRefGoogle Scholar
  5. 5.
    Wang, C.-Y., Atkinson, M. W., Fertig, K. W., & Sastry, A. R. K. (1986). Performance evaluation of multi-hop packet radio networks using simulation. In MILCOM ‘86Military Communications Conference, Monterey, CA, October 1986, pp. 28.5.1–28.5.6.Google Scholar
  6. 6.
    Funabiki, N., & Takefuji, Y. (1993). A parallel algorithm for broadcast scheduling problems in packet radio networks. IEEE Transactions on Communications, 41(6), 828–831.CrossRefGoogle Scholar
  7. 7.
    Goutam, C., & Hirano, Y. (1998). Genetic algorithm for broadcast scheduling in packet radio networks. In Proceedings of IEEE World Congress Computational Intelligence, Anchorage, AK, May 1998, pp. 183–188.Google Scholar
  8. 8.
    Salcedo-Sanz, S., Bousono-Calzon, C., & Figueiras-Vidal, A. R. (2003). A mixed neural-genetic algorithm for the broadcast scheduling problem. IEEE Transactions on Wireless Communications, 2(2), 277–283.CrossRefGoogle Scholar
  9. 9.
    Ngo, C. Y., & Li, V. O. K. (2003). Centralized broadcast scheduling in packet radio networks via genetic-fix algorithms. IEEE Transactions on Communications, 51(9), 1439–1441.CrossRefGoogle Scholar
  10. 10.
    Peng, Y., Soong, B. H., & Wang, L. (2004). Broadcast scheduling in packet radio networks using mixed tabu-greedy algorithm. Electronics Letters, 40(6), 375–376.CrossRefGoogle Scholar
  11. 11.
    Shi, H., & Wang, L. (2005). Broadcast scheduling in wireless multihop networks using a neural-network-based hybrid algorithm. Neural Networks, 18, 765–771.CrossRefGoogle Scholar
  12. 12.
    Chakraborty, G. (2004). Genetic Algorithm to solve optimum TDMA transmission schedule in broadcast packet radio networks. IEEE Transactions on Communications, 52(5), 765–777.CrossRefGoogle Scholar
  13. 13.
    Wu, X., Sharif, B. S., Hinton, O. P., & Tsimenidis, C. C. (2005). Solving optimum TDMA broadcast scheduling in mobile ad hoc networks: A competent permutation genetic algorithm approach. IEE Proceedings: Communications, 152(6), 780–788.CrossRefGoogle Scholar
  14. 14.
    Ahmad, I., Al-Kazemi, B., & Das, A. S. (2008). An efficient algorithm to find broadcast schedule in ad hoc TDMA networks. Journal of Computer Systems, Networks, and Communications, 12, 1–10.CrossRefGoogle Scholar
  15. 15.
    Sun, M., Zhao, L., Cao, W., Xu, Y., Dai, X., & Wang, X. (2010). Novel hysteretic noisy chaotic neural network for broadcast scheduling problems in packet radio networks. IEEE Transactions on Neural Networks, 21(9), 1422–1433.CrossRefGoogle Scholar
  16. 16.
    Chakrabortya, G., Chakraborty, D., & Shiratori, N. (2005). A heuristic algorithm for optimum transmission schedule in broadcast packet radio networks. Computer Communications, 28, 74–85.CrossRefGoogle Scholar
  17. 17.
    Gunasekaran, R., Siddharth, S., Krishnaraj, P., Kalaiarasan, M., & Rhymend Uthariaraj, V. (2010). Efficient algorithms to solve broadcast scheduling problem in WiMAX mesh networks. Computer Communications, 33, 1325–1333.CrossRefGoogle Scholar
  18. 18.
    Ramanathan, S., & Lloyd, E. L. (1993). Scheduling algorithms for multihop radio networks. IEEE/ACM Transactions on Networking, 1(2), 166–177.CrossRefGoogle Scholar
  19. 19.
    Yeo, J., Lee, H., & Kim, S. (2002). An efficient broadcast scheduling algorithm for TDMA ad-hoc networks. Computers & Operations Research, 29(13), 1793–1806.CrossRefGoogle Scholar
  20. 20.
    Bi, W., Tang, Z., Wang, J., & Cao, Q. (2005). An improved neural network algorithm for broadcast scheduling problem in packet radio. Neural Information Processing-Letters and Reviews, 9(1), 23–29.Google Scholar
  21. 21.
    Menon, S. (2009). A sequential approach for optimal broadcast scheduling in packet radio networks. IEEE Transactions on Communications, 57(3), 764–770.CrossRefGoogle Scholar
  22. 22.
    Wang, L., & Shi, H. (2006). A gradual noisy chaotic neural network for solving the broadcast schedule problem in packet radio networks. IEEE Transactions on Neural Networks, 17(4), 989–1000.CrossRefGoogle Scholar
  23. 23.
    Oki, E., & Iwaki, A. (2010). Load-balanced IP routing scheme based on shortest paths in hose model. IEEE Transactions on Communications, 58(7), 2088–2096.CrossRefGoogle Scholar
  24. 24.
    Wang, L., Liu, W., & Shi, H. (2009). Delay-constrained multicast routing using the noisy chaotic neural networks. IEEE Transactions on Computers, 58(1), 82–89.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sinanoglu, O., Karaata, M. H., & Albdaiwi, B. (2010). An inherently stabilizing algorithm for node-to-node routing over all shortest node-disjoint paths in hypercube networks. IEEE Transactions on Computers, 59(7), 995–999.CrossRefGoogle Scholar
  26. 26.
    Michalewicz, Z. (1995). Genetic algorithms + data structure = evolution programs. New York: Springer.Google Scholar
  27. 27.
    De Jong, K. A., & Spears, W. M. (1989). Using genetic algorithms to solve NP-complete problems. In Proceedings of the 3rd International Conference on Genetic Algorithms (pp. 124–132).Google Scholar
  28. 28.
    Banos, R., Gil, C., Reca, J., & Montoya, F. G. (2010). A memetic algorithm applied to the design of water distribution networks. Applied Soft Computing, 10, 261–266.CrossRefGoogle Scholar
  29. 29.
    Krasnogor, N., & Gustafson, S. (2002). Toward truly memetic algorithms: Discussion and proof of concepts. In Proceedings of PPSN VII.Google Scholar
  30. 30.
    Moscato, P. (1999). Memetic algorithms: A short introduction new ideas in optimization (pp. 219–234). New York: McGraw-Hill.Google Scholar
  31. 31.
    Lu, Z., & Hao, J. K. (2010). A memetic algorithm for graph coloring. European Journal of Operational Research, 203, 241–250.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Liu, M., Pang, W., Wang, K. P., Song, Y. Z., & Zhou, C. G. (2006). Improved immune genetic algorithm for solving flow shop scheduling problem. In Computational methods (pp. 1057–1062). Springer.Google Scholar
  33. 33.
    Jiao, L., & Wang, L. (2000). A novel genetic algorithm based on immunity. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems And Humans, 30(5), 552–561.CrossRefGoogle Scholar
  34. 34.
    Wang, D., Fung, R. Y. K., & Ip, W. H. (2009). An immune-genetic algorithm for introduction planning of new products. Computers & Industrial Engineering, 56, 902–917.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsAnna UniversityChennaiIndia

Personalised recommendations