Wireless Networks

, Volume 18, Issue 2, pp 199–213 | Cite as

Segment-based packet combining: how to schedule a dense relayer cluster?

  • Andreas WilligEmail author
  • Holger Karl
  • Danil Kipnis


The classical three-terminal relaying scenario can be generalized to an entire cluster of relayers, which in this paper is assumed to be densely deployed. We consider the combination of cluster-based relaying with a packet-combining technique where the user data of a packet is partitioned into contiguous segments that can be individually checked for correctness. In such a setup the question arises how to schedule the transmissions of the relayers to either minimize the average transmission costs until at least one (and then all) relayers have the full set of segments, or to maximize the per-segment diversity, i.e. the number of distinct relayers sending the same segment. We investigate different options for scheduling the relayer cluster and show that under certain assumptions, average-optimal and easily implementable schedules exist. We furthermore provide numerical evidence that the adoption of a segment-based approach gives performance benefits over the “classical” method which only considers correctness of whole packets.


Packet combining Relayer cluster Scheduling 



This work was partially supported by the Germany ministry of Education and Research in the AVS-ZESAN project, contract 01BN0712D, and the MIKOA project, contract V3AVS009.


  1. 1.
    Banks, J., Carson, J. S., Nelson, B. L., & Nicol, D. M. (2000). Discrete-event system simulation, 3rd edn. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  2. 2.
    Bertsekas, D. P. (2005). Dynamic programming and optimal control, Vol. 1, 3rd edn. Belmont: Athena Scientific.Google Scholar
  3. 3.
    Cover, T. M., & Gamal, A. A. E. (1979). Capacity theorems for the relay channel. IEEE Transactions Information Theory, 25(5), 572–584.zbMATHCrossRefGoogle Scholar
  4. 4.
    Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.CrossRefGoogle Scholar
  5. 5.
    Dubois-Ferriere, H., Estrin, D., & Vetterli, M. (2005). Packet combining in sensor networks. In Proceedings of 3rd international conference on embedded networked sensor systems (SenSys). San Diego, CA.Google Scholar
  6. 6.
    Ganti, R. K., Jayachandran, P., Luo, H., & Abdelzaher, T. F. (2006). Datalink streaming in wireless sensor networks. In Proceedings of the 4th international conference on embedded networked sensor systems (ACM SenSys), (pp. 209–222).Google Scholar
  7. 7.
    IEEE Computer Society. (2007). Sponsored by the LAN/MAN Standards Committee. IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements—part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications.Google Scholar
  8. 8.
    Kipnis, D., Jacob, T., & Willig, A. (2010). Measured performance of a memory-efficient segment-based packet-combining scheme. In Proceedings of IFIP wireless days, 2010. Venice, Italy.Google Scholar
  9. 9.
    Kramer, G., Maric, I., & Yates, R. D. (2006). Cooperative communications. Foundations and Trends in Networking, 1(3–4), 271–425.CrossRefGoogle Scholar
  10. 10.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behaviour. IEEE Transactions Information Theory, 50(12), 3062–3080.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lettieri, P., & Srivastava, M. (1998). Adaptive frame length control for improving wireless link throughput, range and energy efficiency (pp. 564–571). In: Proceedings of INFOCOM 1998. San Francisco, CA.Google Scholar
  12. 12.
    Liu, H., Ma, H., Zarki, M. E., & Gupta, S. (1997). Error control schemes for networks: An overview. MONET Mobile Networks and Applications, 2(2), 167–182.CrossRefGoogle Scholar
  13. 13.
    Liu, K. J. R., Sadek, A. K., Su, W., Kwasinski, A. (2009). Cooperative Communications and Networking. Cambridge, UK: Cambridge University Press.zbMATHGoogle Scholar
  14. 14.
    Molisch, A. F., Balakrishnan, K., Chong, C.-C., Emami, S., Fort, A., Karedal, J., Kunisch, J., et al. (2004). IEEE 802.15.4a channel model-final report. Technical report IEEE 802.15-04-0662-01-04a, IEEE P802.15 working group for wireless personal area networks (WPANs).Google Scholar
  15. 15.
    Norris, J. R. (1997). Markov chains. Cambridge, UK: Cambridge University Press.zbMATHGoogle Scholar
  16. 16.
    Pereira, N., Andersson, B., & Tovar, E. (2007). WiDom: A dominance protocol for wireless medium access. IEEE Transactions Industrial Informatics, 3(2), 120–130.CrossRefGoogle Scholar
  17. 17.
    Rappaport, T. S. (2002). Wireless communications—principles and practice. Upper Saddle River, NJ: Prentice HallGoogle Scholar
  18. 18.
    Sohrabi, K., Manriquez, B., & Pottie, G. J. (1999). Near ground wideband channel measurement in 800–1,000 MHz. In Proceedings of IEEE vehicular technology conference (VTC) ’99.Google Scholar
  19. 19.
    Willig, A. (2009). Memory-Efficient Segment-Based Packet-Combining Schemes in Face of Deadlines. IEEE Transactions Industrial Informatics, 5(3), 338–350.CrossRefGoogle Scholar
  20. 20.
    Willig, A., Kipnis, D., & Karl, H. (2010). Segment-based packet combining in a cluster: To combine or not to combine? In Proceedigns of sixth international conference on intelligent sensors, sensor networks and information processing (ISSNIP). Brisbane, Australia.Google Scholar
  21. 21.
    Zhou, Y., & Wang, J. (2006). Optimum subpacket transmission for hybrid ARQ systems. IEEE Transactions Communications, 54(5), 934–942.CrossRefGoogle Scholar
  22. 22.
    Zorzi, M., & Rao, R. R. (2003). Geographic random forwarding (GeRaF) for Ad hoc and sensor networks: Multihop performance. IEEE Transactions Mobile Computing, 2(4), 337–348.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University of CanterburyChristchurchNew Zealand
  2. 2.University of PaderbornPaderbornGermany
  3. 3.Technical University of BerlinBerlinGermany

Personalised recommendations