Wireless Networks

, 17:1833 | Cite as

Metadata-guided evaluation of resource-constrained queries in content caching based wireless networks

  • Ruilin Liu
  • Xiuyuan Zheng
  • Hongbo Liu
  • Hui Wang
  • Yingying Chen


Recent years have witnessed the emergence of data-centric storage that provides energy-efficient data dissemination and organization in mobile wireless environments. However, limited resources of wireless devices bring unique challenges to data access and information sharing. To address these challenges, we introduce the concept of content caching networks, in which the collected data will be stored by its contents in a distributed manner, while the data in the network is cached for a certain period of time before it is sent to a centralized storage space for backup. Furthermore, we propose a metadata-guided query evaluation approach to achieve query efficiency in content caching networks. By this approach, each cache node will maintain the metadata that summarizes the data content on itself. Queries will be evaluated first on the metadata before on the cached data. By ensuring that queries will only be evaluated on relevant nodes, the metadata-guided query evaluation approach can dramatically improve the performance of query evaluation. We design efficient algorithms to construct metadata for both numerical and categorical data types. Our theoretical and empirical results both show that our metadata-guided approach can accelerate query evaluation significantly, while achieving the memory requirements on wireless devices.


Resource-constrained queries Content caching networks Wireless networks Metadata Efficient query evaluation 


  1. 1.
    Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., & Estrin, D. (2003). Data-centric storage in sensornets. ACM SIGCOMM Computer Communication Review archive, 33.Google Scholar
  2. 2.
    Ghose, A., Grossklags, J., & Chuang, J. (2003). Resilient data-centric storage in wireless ad-hoc sensor networks. In Proceedings of the 4th international conference on mobile data management, pp. 45–62.Google Scholar
  3. 3.
    Shao, M., Zhu, S., Zhang, W., & Cao, G. (2007). pDCS: Security and privacy support for data-centric sensor networks. In Proceedings of the IEEE international conference on computer communications (INFOCOM).Google Scholar
  4. 4.
    Zhang, W., Cao, G., & Porta, T. L. (2003). Data dissemination with ring-base index for wireless sensor networks. In IEEE international conference on network protocols (ICNP).Google Scholar
  5. 5.
    RatNasamy, S., karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R. & Shenker, S. (2002). GHT: A geographic hash table for data-centric storage. In ACM international workshop on wireless sensor networks and applications.Google Scholar
  6. 6.
    Li, J., Chou, P., & Zhang, C. (2004). Mutualcast: An efficient mechanism for content distribution in a peer-to-peer (p2p) network. Microsoft Research TechReport (MSR-TR-2004-100), 100.Google Scholar
  7. 7.
    Wang, H., Liu, R., Zheng, X., Chen, Y., & Liu, H. (2009). To do or not to do: metadata-guided query evaluation in content caching networks. In Proceedings of the 28th IEEE conference on global telecommunications, pp. 4524–4529.Google Scholar
  8. 8.
    W3C, Extensihle markup language (xml).
  9. 9.
    W3C, Xpath 2.0,
  10. 10.
    Gottlob, G., Koch, C., & Pichler, R. (2003). The complexity of xpath query evaluation. In Proceedings of the ACM international conference on principles of database systems (PODS), pp. 179–190.Google Scholar
  11. 11.
    Gottlob, G., Koch, C., & Pichler, R. (2003). Xpath query evaluation: Improving time and space efficiency. In Proceedings of the 19th IEEE international conference on data engineering (ICDE), pp. 379–390.Google Scholar
  12. 12.
    Gottlob, G., Koch, C., & Pichler, R. (2002). Efficient algorithms for processing xpath queries. In Proceedings of the 28th international conference on very large data bases (VLDB).Google Scholar
  13. 13.
    Lloyd, S. (1982). Least squares quantization in pcm. In IEEE transactions on information theory, pp. 128–137.Google Scholar
  14. 14.
    Brinkhoff, T. (2000). Generating network-based moving objects. In Proceedings of the 12th international conference on scientific and statistical database management.Google Scholar
  15. 15.
    Brinkhoff, T. (2002). A framework for generating network-based moving objects. GeoInformatica, 6(2), 153–180.CrossRefGoogle Scholar
  16. 16.
    Crossbow Technology Inc. White paper available at
  17. 17.
    W3C, Xml schema language,
  18. 18.
    W3C, Xml query language,
  19. 19.
    The open archives initiative protocol for metadata harvesting 2.0,
  20. 20.
    Sensor model language,
  21. 21.
  22. 22.
    Johannes, P. B., Gehrke, J., & Seshadri, P. (2001). Towards sensor database systems. In Proceedings of the second international conference on mobile data management, pp. 3–14.Google Scholar
  23. 23.
    Yao, Y., & Gehrke, J. (2002). The cougar approach to in-network query processing in sensor networks. SIGMOD Record 31, 2002.CrossRefGoogle Scholar
  24. 24.
    Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2003). The design of an acquisitional query processor for sensor networks. In Proceedings of the 2003 ACM SIGMOD international conference on management of data, pp. 491–502.Google Scholar
  25. 25.
    Madden, S., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2002). Tag: a tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36, 131–146.CrossRefGoogle Scholar
  26. 26.
    Tu Z., & Liang, W. (2005). Energy-efficient aggregate query evaluation in sensor networks, p. 3794.Google Scholar
  27. 27.
    Heidemann, J., Silva, F., Intanagonwiwat, C., Govindan, R., Estrin, D., & Ganesan, D. (2001). Building efficient wireless sensor networks with low-level naming. SIGOPS Oper. Syst. Rev., 35, 146–159.CrossRefGoogle Scholar
  28. 28.
    Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D. & Heidemann, J. (2003). An evaluation of multi-resolution search and storage in resource-constrained sensor networks. In Proceedings of the ACM sensys.Google Scholar
  29. 29.
    Galpin, I., Brenninkmeijer, C. Y., Jabeen, F., Fernandes, A. A., & Paton, N. W. (2009). Comprehensive optimization of declarative sensor network queries. In Proceedings of the 21st international conference on scientific and statistical database management, pp. 339–360.Google Scholar
  30. 30.
    Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., & Estrin, D. (2003). Data-centric storage in sensornets. SIGCOMM Comput. Commun. Rev. 3, 137–142.CrossRefGoogle Scholar
  31. 31.
    Ee, C. T., & Ratnasamy, S. (2006). Practical data-centric storage. In USENIX symposium on networked systems design and implementation.Google Scholar
  32. 32.
    Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R., Yin, L., & Yu, F. (2003). Data-centric storage in sensornets with ght, a geographic hash table. Mob. Netw. Appl. 8, 427–442.CrossRefGoogle Scholar
  33. 33.
    Litwin, W., Moussa, R., & Schwarz, T. J. E. (2004). Lh*rs: A highly available distributed data storage system. In Proceedings of the 30th international conference on very large data bases (VLDB), pp. 1289–1292.Google Scholar
  34. 34.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., Fikes, A., & Gruber, R. E. (2006). Bigtable: A distributed storage system for structured data. In Proceedings of the 7th USENIX symposium on operating systems design and implementation, pp. 15–15.Google Scholar
  35. 35.
    Johannesgehrke, P. B., & Mayr, T. (1999). Query processing in a device database system. Cornell University, Technical Report.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ruilin Liu
    • 1
  • Xiuyuan Zheng
    • 2
  • Hongbo Liu
    • 2
  • Hui Wang
    • 1
  • Yingying Chen
    • 2
  1. 1.Department of Computer ScienceStevens Institute of TechnologyHobokenUSA
  2. 2.Department of Electrical and Computer EngineeringStevens Institute of TechnologyHobokenUSA

Personalised recommendations