Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A software framework for alleviating the effects of MAC-aware jamming attacks in wireless access networks

Abstract

The IEEE 802.11 protocol inherently provides the same long-term throughput to all the clients associated with a given access point (AP). In this paper, we first identify a clever, low-power jamming attack that can take advantage of this behavioral trait: the placement of a low-power jammer in a way that it affects a single legitimate client can cause starvation to all the other clients. In other words, the total throughput provided by the corresponding AP is drastically degraded. To fight against this attack, we design FIJI, a cross-layer anti-jamming system that detects such intelligent jammers and mitigates their impact on network performance. FIJI looks for anomalies in the AP load distribution to efficiently perform jammer detection. It then makes decisions with regards to optimally shaping the traffic such that: (a) the clients that are not explicitly jammed are shielded from experiencing starvation and, (b) the jammed clients receive the maximum possible throughput under the given conditions. We implement FIJI in real hardware; we evaluate its efficacy through experiments on two wireless testbeds, under different traffic scenarios, network densities and jammer locations. We perform experiments both indoors and outdoors, and we consider both WLAN and mesh deployments. Our measurements suggest that FIJI detects such jammers in real-time and alleviates their impact by allocating the available bandwidth in a fair and efficient way.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    The CCA (Clear Channel Assessment) threshold specifies the RSSI value below which, receptions are ignored with regards to carrier sensing [10].

  2. 2.

    The rate scaling overhead accounts for the higher delays incurred due to transient lower rates that the rate adaptation algorithm invokes.

  3. 3.

    For larger packet sizes, objective 1 cannot be satisfied; hence we do not need to consider such a case.

  4. 4.

    We consider TCP-Reno in this set of experiments.

References

  1. 1.

    SESP jammers. http://www.sesp.com.

  2. 2.

    ISM wideband jammers. http://69.6.206.229/e-commerce-solutions-catalog1.0.4.htm.

  3. 3.

    Sundaresan, K., & Papagiannaki, K. (2006). The need for cross-layer information in access point selection algorithms. In ACM IMC.

  4. 4.

    Heusse, M., Rousseau, F., Berger-Sabbatel, G., & Duda, A. (2003). Performance anomaly of 802.11b. In IEEE INFOCOM.

  5. 5.

    Athanasiou, G., Korakis, T., Ercetin, O., & Tassiulas, L. (2007). Dynamic cross-layer association in 802.11-based mesh networks. In IEEE INFOCOM.

  6. 6.

    Click web page. http://read.cs.ucla.edu/clic.

  7. 7.

    UCR Wireless Testbed. http://networks.cs.ucr.edu/testbe.

  8. 8.

    Kauffmann, B., et al. (2007). Measurement-based self organization of interfering 802.11 wireless access networks. In IEEE INFOCOM.

  9. 9.

    Broustis, I., Papagiannaki, K., Krishnamurthy, S. V., Faloutsos, M., & Mhatre, V. (2007). MDG: Measurement-driven guidelines for 802.11 WLAN design. In ACM MOBICOM.

  10. 10.

    Mhatre, V., Papagiannaki, K., & Baccelli, F. (2007). Interference mitigation through power control in high density 802.11 WLANs. In IEEE INFOCOM.

  11. 11.

    Razafindralambo, T., Lassous, I. G., Iannone, L., & Fdida, S. (2006). Dynamic packet aggregation to solve performance anomaly in 802.11 wireless networks. In ACM MSWiM.

  12. 12.

    ANSI/IEEE 802.11-Standard. 1999 edition.

  13. 13.

    Kim, H., Yun, S., Kang, I., & Bahk S. (2005). Resolving 802.11 performance anomalies through QoS differentiation. IEEE Communications Letters, 9(7), 655–657. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1461695.

  14. 14.

    Bellavista, P., Corradi, A., & Foschini, L. (2007). The MUM middleware to counteract IEEE 802.11 performance anomaly in context-aware multimedia provisioning. International Journal of Multimedia and Ubiquitous Engineering, 2(2), 15–33. http://middleware.unibo.it/node/545

  15. 15.

    Hierarchical Token Bucket. http://luxik.cdi.cz/∼devik/qos/ht.

  16. 16.

    Vlavianos, A., Law, E., Broustis, I., Krishnamurthy, S. V., & Faloutsos, M. (2008). Assessing link quality in IEEE 802.11 wireless networks: Which is the right metric? In IEEE PIMRC.

  17. 17.

    Dunn, J., Neufeld, M., Sheth, A., Grunwald, D., & Bennett, J. (2004). A practical cross-layer mechanism for fairness in 802.11 networks. In IEEE BROADNETS.

  18. 18.

    Portoles, M., Zhong, Z., & Choi, S. (2003). IEEE 802.11 downlink traffic shaping scheme for multi-user service. In IEEE PIMRC.

  19. 19.

    Iannone, L., & Fdida, S. (2005). Sdt. 11b: Un Schema a Division de Temps Pour Eviter l’anomalie de la Couche MAC 802.11b. In CFIP.

  20. 20.

    Yoo, S., Choi, J., Hwang, J.-H., & Yoo, C. (2005). Eliminating the performance anomaly of 802.11b. In ICN.

  21. 21.

    Yang, D., et al. (2006). Performance enhancement of multi-rate IEEE 802.11 WLANs with geographically-scattered stations. IEEE Transactions on Mobile Computing, 5(7), 906–919. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1637438.

  22. 22.

    Tan, G., & Guttag, J. (2004) Time-based fairness improves performance in multi-rate WLANs. In ACM USENIX.

  23. 23.

    Guo, L., Ding, X., Wang, H., Li, Q., Chen, S., & Zhang, X. (2006). Exploiting idle communication power to improve wireless network performance and energy efficiency. In IEEE INFOCOM.

  24. 24.

    Bahl, V., Chandra, R., Lee, P. P. C., Misra, V., Padhye, J., Rubenstein, D., & Yu, Y. (2008). Opportunistic use of client repeaters to improve performance of WLANs. In ACM CONEXT.

  25. 25.

    Xu, W., Trappe, W., Zhang, Y., & Wood, T. (2005). The feasibility of launching and detecting jamming attacks in wireless networks. In ACM MOBIHOC.

  26. 26.

    Gummadi, R., et al. (2007). Understanding and mitigating the impact of RF interference on 802.11 networks. In ACM SIGCOMM.

  27. 27.

    Navda, V., et al. (2007). Using channel hopping to increase 802.11 resilience to jamming attacks. In IEEE INFOCOM mini-conference.

  28. 28.

    Hu, W., Wood, T., Trappe, W., & Zhang, Y. (2004). Channel surfing and spatial retreats: Defenses against wireless denial of service. In WISE.

  29. 29.

    ISM wide-band jammers. http://69.6.206.229/e-commerce-solutions-catalog1.0.4.htm.

  30. 30.

    ISA: Users fear wireless networks for control. http://lists.jammed.com/ISN/2007/05/0122.html.

  31. 31.

    Pelechrinis, K., Koufogiannakis, C., & Krisnamurthy, S. V. (2009). Gaming the jammer: Is frequency hopping effective? In WiOpt.

  32. 32.

    Vedantham, R., Kakumanu, S., Lakshmanan, S., & Sivakumar, R. (2006). Component based channel assignment in single radio, multi-channel ad hoc networks. In ACM MOBICOM

  33. 33.

    Kandula, S., Lin, K.C-J., Badirkhanli, T., & Katabi, D. (2008). FatVAP: Aggregating AP backhaul capacity to maximize throughput. In USENIX NSDI.

  34. 34.

    Xu, W., Ma, K., Trappe, W., & Zhang, Y. (2006). Jamming sensor networks: Attacks and defense strategies. In IEEE Network.

  35. 35.

    Lin, G., & Noubir, G. (2005). On link layer denial of service in data wireless LANs. Wireless Communications and Mobile Computing, 273–284. http://www.arnetminer.com/viewpub.do?pid=1140613.

  36. 36.

    Noubir, G., & Lin, G. (2003). Low-power DoS attacks in data wireless LANs and countermeasures. In ACM MOBIHOC (poster).

  37. 37.

    Xu, W., Trappe, W., & Zhang, Y. (2008). Anti-jamming timing channels for wireless networks. In ACM WiSec.

  38. 38.

    Noubir, G. (2004). On connectivity in ad hoc network under jamming using directional antennas and mobility. Wired/Wireless Internet Communications, 2957/2004, 186–200.

  39. 39.

    Li, M., Koutsopoulos, I., & Poovendran, R. (2007). Optimal jamming attacks and network defense policies in wireless sensor networks. In IEEE INFOCOM.

  40. 40.

    Cagalj, M., Capkun, S., & Hubaux, J.-P. (2007). Wormhole-based anti-jamming techniques in sensor networks. IEEE Transactions on Mobile Computing, 6(1), 100–114.

  41. 41.

    Law, Y. W., van Hoesel, L., Doumen, J., Hartel, P., & Havinga, P. (2005). Energy efficient link-layer jamming attacks against wireless sensor network MAC protocols. In Proceedings of ACM security sensor ad-hoc networks (SASN).

  42. 42.

    Mallik, R., Scholtz, R., Papavassilopoulos, G. (2000). Analysis of an on-off jamming situation as a dynamic game. IEEE Transactions on Communications, 48(8), 1360–1373.

  43. 43.

    Awerbuch, B., et al. (2008). A jamming-resistant MAC protocol for single-hop wireless networks. In PODC.

  44. 44.

    Wood, A. D., Stankovic, J. A., & Zhou, G. (2007). DEEJAM: Defeating energy-efficient jamming in IEEE 802.15.4-based wireless networks. In IEEE SECON.

  45. 45.

    Acharya, M., Shamra, T., Thuente, D., & Sizemore, D. (2005). Intelligent jamming attacks in 802.11b wireless networks. In OPNETWORK conference.

  46. 46.

    Thuente, D., & Acharya, M. (2006). Intelligent jamming in wireless networks with applications to 802.11b and other networks. In MILCOM.

  47. 47.

    Rude/Crude measurement tool. http://rude.sourceforge.net.

  48. 48.

    Soekris-net4826. http://www.soekris.com/net4826.ht.

  49. 49.

    Jardosh, A., et al. (2006). IQU: Practical Queue-Based User Association. In ACM MOBICOM.

  50. 50.

    Akella, A., Judd, G., Seshan, S., & Steenkiste, P. (2005). Self-management in chaotic wireless deployments. In ACM MOBICOM.

Download references

Acknowledgments

We thank Intel Research for providing the wireless driver. This work was done partially with support from the US Army Research Office under the Multi-University Research Initiative (MURI) grants W911NF-07-1-0318 and the NSF NeTS:WN / Cyber trust grant 0721941.

Author information

Correspondence to Ioannis Broustis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Broustis, I., Pelechrinis, K., Syrivelis, D. et al. A software framework for alleviating the effects of MAC-aware jamming attacks in wireless access networks. Wireless Netw 17, 1543–1560 (2011). https://doi.org/10.1007/s11276-011-0363-6

Download citation

Keywords

  • IEEE 802.11 Wireless Medium Access Control
  • Fairness
  • Jamming
  • Implementation
  • Testbed
  • Measurement