Advertisement

Wireless Networks

, Volume 17, Issue 6, pp 1441–1459 | Cite as

Game theory and time utility functions for a radio aware scheduling algorithm for WiMAX networks

  • Rosario G. Garroppo
  • Stefano Giordano
  • Davide Iacono
  • Luca TavantiEmail author
Article

Abstract

In WiMAX systems the Base Station scheduler plays a key role as it controls the sharing of the radio resources among the users. The goal of the scheduler is multiple: achieve fair usage of the resources, satisfy the QoS requirements of the users, maximize goodput, and minimize power consumption, and at the same time ensuring feasible algorithm complexity and system scalability. Since most of these goals are contrasting, scheduler designers usually focus their attention on optimizing one aspect only. In this scenario, we propose a scheduling algorithm (called \(\mathrm{GTS_N}\)) whose goal is to contemporaneously achieve efficiency and fairness, while also taking into account the QoS requirements and the channel state. \(\mathrm{GTS_N}\) exploits the properties of Time Utility Functions (TUFs) and Game Theory. Simulations prove that the performance of \(\mathrm{GTS_N},\) when compared to that of several well-known schedulers, is remarkable. \(\mathrm{GTS_N}\) provides the best compromise between the two contrasting objectives of fairness and efficiency, while QoS requirements are in most cases guaranteed. However, the exponential complexity introduced by the game theory technique makes it rather impractical and not computationally scalable for a large number of users. Thus we developed a suboptimal version, named sub-\(\mathrm{GTS_N}.\) We show that this version retains most of the features and performance figures of its brother, but its complexity is linear with the number of users.

Keywords

IEEE 802.16 Mobile WiMAX Radio aware scheduler Game Theory Time-utility functions 

References

  1. 1.
    The WiMAX Forum. http://wimaxforum.org.
  2. 2.
    Andrews, M., Kumaran, K., Ramanan, K., Stolyar, A. L., Vijayakumar, R., & Whiting, P. (2001) Providing quality of service over a shared wireless link. IEEE Communications Magazine, 39(2), 150–154. doi: 10.1109/35.900644.CrossRefGoogle Scholar
  3. 3.
    Bennett, J., & Zhang, H. (1996) WF2Q: worst-case fair weighted fair queueing. In: Annual Joint Conference of the IEEE Computer Societies (INFOCOM), Vol. 1, pp. 120–128. doi: 10.1109/INFCOM.1996.497885.
  4. 4.
    Bennett, J., & Zhang, H. (1997) Hierarchical packet fair queueing algorithms. IEEE/ACM Transactions on Networking, 5(5): 675–689 doi: 10.1109/90.649568.CrossRefGoogle Scholar
  5. 5.
    Cicconetti, C., Lenzini, L., Mingozzi, E., & Eklund, C. (2006). Quality of service support in IEEE 802.16 networks. IEEE Network, 20(2), 50–55. doi: 10.1109/MNET.2006.1607896.CrossRefGoogle Scholar
  6. 6.
    Cole, R. G., & Rosenbluth, J. H. (2001). Voice over IP performance monitoring. ACM SIGCOMM Computer Communication Review 31(2):9–24. doi: 10.1145/505666.505669.CrossRefGoogle Scholar
  7. 7.
    Demers, A., Keshav, S., & Shenker, S. (1989). Analysis and simulation of a fair queueing algorithm. In: ACM SIGCOMM Symposium on Communications architectures and protocols. doi:http://doi.acm.org/10.1145/75246.75248.
  8. 8.
    Garroppo, R., Giordano, S., & Iacono, D. (2009). Radio-aware scheduler for WiMAX systems based on time-utility function and game theory. In: IEEE Global Telecommunications Conference (Globecom). doi: 10.1109/GLOCOM.2009.5425581.
  9. 9.
    Gerok, W., Rusche, S., & Unger, P. (2009). Hybrid broadband access with ieee 802.16e: An economic approach for rural areas. In: IEEE Mobile WiMAX Symposium (MWS), pp. 93–97. doi: 10.1109/MWS.2009.26.
  10. 10.
    Harsanyi, J. C. (1966). A general theory of rational behavior in game situations. Econometrica, 34(3), 613–634.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hata, M. (1980). Empirical formula for propagation loss in land mobile radio services. IEEE Transactions on Vehicular Technology 29(3), 317–325. doi: 10.1109/T-VT.1980.23859.Google Scholar
  12. 12.
    IEEE Std 802.16e-2005. (2006). IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air interface for fixed broadband wireless access system—amendment 2: Physical and medium access control layers for combined fixed and mobile operation in licensed bands.Google Scholar
  13. 13.
    Iera, A., Molinaro, A., & Pizzi, S. (2007). Channel-aware scheduling for QoS and fairness provisioning in IEEE 802.16/WiMAX broadband wireless access systems. IEEE Network, 21(5), 34–41. doi: 10.1109/MNET.2007.4305171.CrossRefGoogle Scholar
  14. 14.
    International Telecommunication Union. (1988). Telecommunication Standardization Sector (ITU-T): Recommendation G.711: Pulse code modulation (PCM) of voice frequencies.Google Scholar
  15. 15.
    International Telecommunication Union. (1996). Telecommunication Standardization Sector (ITU-T): Recommendation G.113: Transmission impairments.Google Scholar
  16. 16.
    International Telecommunication Union. (1996). Telecommunication Standardization Sector (ITU-T): Recommendation P.800: Methods for subjective determination of transmission quality.Google Scholar
  17. 17.
    International Telecommunication Union. (2009). Telecommunication Standardization Sector (ITU-T): Recommendation G.107: The E-model: A computational model for use in transmission planning.Google Scholar
  18. 18.
    Jain, R., Chiu, D., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared systems. DEC Research Report TR-301.Google Scholar
  19. 19.
    Jensen, E. D., Locke, C. D., Tokuda, H. (1985). A time-driven scheduling model for real-time operating systems. In: IEEE Real-Time Systems Symposium.Google Scholar
  20. 20.
    Kim, H., & Han, Y. (2005). A proportional fair scheduling for multicarrier transmission systems. IEEE Communications Letters, 9(3), 210–212. doi: 10.1109/LCOMM.2005.03014.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Lin, F. (2009) Future US wireless landscape and IMS rollout. In: Annual Wireless and Optical Communications Conference (WOCC). doi: 10.1109/WOCC.2009.5312786.
  22. 22.
    Neumann, J. V., & Morgenstern, O. (1944) Theory of games and economic behavior. Princeton: Princeton University Press.zbMATHGoogle Scholar
  23. 23.
    Okomura, Y., Ohmori, E., Kawano, T., & Fukua, K. (1968). Field strength and its variability in VHF and UHF land-mobile radio service. Review of the Electrical Communications Laboratory, 16(9–10), 825–873.Google Scholar
  24. 24.
    Ookla.The global broadband speed test. http://www.speedtest.net.
  25. 25.
    Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Cambridge: MIT Press.zbMATHGoogle Scholar
  26. 26.
    Rath, H., Bhorkar, A., & Sharma, V. (2006). An opportunistic uplink scheduling scheme to achieve bandwidth fairness and delay for multiclass traffic in Wi-Max (IEEE 802.16) broadband wireless networks. In: IEEE Global Telecommunications Conference (Globecom). doi: 10.1109/GLOCOM.2006.326.
  27. 27.
    Ruangchaijatupon, N., & Ji, Y. (2008). Simple proportional fairness scheduling for OFDMA frame-based wireless systems. In: IEEE Wireless Communications and Networking Conference (WCNC), pp. 1593–1597 (2008). doi: 10.1109/WCNC.2008.285.
  28. 28.
    Ruangchaijatupon, N., Wang, L., & Ji, Y. (2006). A study on the performance of scheduling schemes for broadband wireless access networks. In: International Symposium on Communications and Information Technologies (ISCIT), pp. 1008–1012. doi: 10.1109/ISCIT.2006.339929.
  29. 29.
    Ryu, S., Ryu, B., Seo, H., & Shi, M. (2005). Urgency and efficiency based wireless downlink packet scheduling algorithm in OFDMA system. In: IEEE vehicular technology conference, spring, Vol. 3, pp. 1456–1462. doi: 10.1109/VETECS.2005.1543561.
  30. 30.
    Sayenko, A., Alanen, O., & Hmlinen T. (2008) Scheduling solution for the IEEE 802.16 base station. Computer Networks, 52(1):96–115, doi: 10.1016/j.comnet.2007.09.021.zbMATHCrossRefGoogle Scholar
  31. 31.
    Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V. (2003). RTP: A transport protocol for real-time applications. IETF RFC 3550.Google Scholar
  32. 32.
    Shimizu, Y., Zhou, R., & Sasase, I. (2007). Packet scheduling algorithm with modified time-utility function to improve NRT throughput in OFDMA system. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PacRim), pp. 545–548 (2007). doi: 10.1109/PACRIM.2007.4313294.
  33. 33.
    Shreedhar, M., & Varghese, G. (1995). Efficient fair queueing using deficit round robin. ACM SIGCOMM Computer Communication Review 25(4), 231–242. doi: 10.1145/217391.217453.CrossRefGoogle Scholar
  34. 34.
    So-In, C., Jain, R., & Tamimi, A. K. (2009). Scheduling in IEEE 802.16e mobile WiMAX networks: key issues and a survey. IEEE Journal on Selected Areas in Communications, 27(2), 156–171. doi: 10.1109/JSAC.2009.090207.CrossRefGoogle Scholar
  35. 35.
    Stolyar, A. L., & Ramanan, K. (2001). Largest weighted delay first scheduling: Large deviations and optimality. The Annals of Applied Probability, 11(1), 1–48.zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Valencia, C., & Kunz, T. (2010). Scheduling alternatives for mobile WiMAX end-to-end simulations and analysis. In: International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 371–375. doi: 10.1145/1815396.1815483.
  37. 37.
    Wang, J., & Ravindran, B. (2004). Time-utility function-driven switched Ethernet: Packet scheduling algorithm, implementation, and feasibility analysis. IEEE Transactions on Parallel and Distributed Systems, 15(2), 119–133 (2004). doi: 10.1109/TPDS.2004.1264796.CrossRefGoogle Scholar
  38. 38.
    Yaacoub, E., & Dawy, Z. (2009). A game theoretical formulation for proportional fairness in LTE uplink scheduling. In: IEEE Wireless Communications and Networking Conference (WCNC). doi: 10.1109/WCNC.2009.4917504.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rosario G. Garroppo
    • 1
  • Stefano Giordano
    • 1
  • Davide Iacono
    • 1
  • Luca Tavanti
    • 1
    Email author
  1. 1.Department of Information EngineeringUniversity of PisaPisaItaly

Personalised recommendations