Wireless Networks

, Volume 17, Issue 5, pp 1287–1304 | Cite as

Seeker: A bandwidth-based association control framework for wireless mesh networks



The rapid deployment of wireless mesh networks across universities and enterprises, and the pervasiveness of mobile devices equipped with Wi-Fi connectivity, has resulted in a scenario wherein end users have the option to choose from a multitude of access points at any given location. Moreover, with the increasing availability of rich online content, there has been a steady increase in mobile Internet traffic. Since the choice of access point that a user associates with will directly impact his performance, it is imperative that there exist an efficient association control mechanism, in order to enhance the end user’s experience. As part of this work, we propose Seeker, a novel framework for association control in wireless networks that utilizes “available bandwidth” as the design metric. The goal of Seeker is to assist the mesh network in making an intelligent decision regarding which access point a client should associate with. As part of our scheme, we implement and evaluate a passive tool to estimate available bandwidth in wireless networks. We then describe how we use this tool to implement our association control scheme, and evaluate it via extensive experiments on an outdoor testbed. Seeker takes into consideration the performance of the mesh backhaul, in addition to the client-to-AP link quality, thereby achieving significant advantages over traditional association control schemes for wireless-LANs.


Wireless mesh Available bandwidth Association control 


  1. 1.
  2. 2.
    Optimized link state routing (olsr) protocol. (2007). http://www.olsr.or.
  3. 3.
    Orange mesh. (2008). http://orangemesh.ucdavis.ed.
  4. 4.
    Quail ridge reserve wireless mesh network. (2008). http://spirit.cs.ucdavis.edu/quailridg.
  5. 5.
    AT&T Faces 5,000 Percent Surge in Traffic. (2009). http://www.internetnews.com/mobility/article.php/384300.
  6. 6.
    Wifi Google. (2009). http://wifi.google.co.
  7. 7.
    Smart phones are making Wi-Fi hotspots hot again. http://www.physorg.com/news180286896.htm.
  8. 8.
    Abusubaih, M., & Wolisz, A. (2008). Interference-aware decentralized access point selection policy for multi-rate ieee 802.11 wireless lans. In: Proceedings of the IEEE PIMRC.Google Scholar
  9. 9.
    Aguayo, D., Bicket, J., Biswas, S., Judd, G., & Morris, R. (2004). Link-level measurements from an 802.11b mesh network. In: Proceedings of ACM SIGCOMM.Google Scholar
  10. 10.
    Argento, A., Cesana, M., Gatti, N., & Malanchini, I. (2010). A game theoretical study of access point association in wireless mesh networks. Computer Communications (In Press, Corrected Proof).Google Scholar
  11. 11.
    Athanasiou, G., Korakis, T., Ercetin, O., & Tassiulas, L., (2009). A cross-layer framework for association control in wireless mesh networks. IEEE Transactions on Mobile Computing, 8, 65–80.Google Scholar
  12. 12.
    Bahl, P., Adya, A., Padhye, J., & Walman, A. (2004). Reconsidering wireless systems with multiple radios. SIGCOMM Comput Commun Rev, 34, 39–46.Google Scholar
  13. 13.
    Bahl, P., Hajiaghayi, M., Jain, K., Mirrokni, S., Qiu, L., & Saberi, A. (2007). Cell breathing in wireless lans: Algorithms and evaluation. Mobile Computing, IEEE Transactions on 6.Google Scholar
  14. 14.
    Balachandran, A., Bahl, P., & Voelker, G. M. (2002). Hot-spot congestion relief and service guarantees in public-area wireless networks. SIGCOMM Comput Commun Rev, 32, 59.Google Scholar
  15. 15.
    Balasubramanian, N., Balasubramanian, A., Venkataramani, A. (2009). Energy consumption in mobile phones: A measurement study and implications for network applications. In: IMC ’09: Proceedings of the 9th ACM SIGCOMM conference on internet measurement conference.Google Scholar
  16. 16.
    Bejerano, Y., Han, S. J., & Li, L. (2007). Fairness and load balancing in wireless lans using association control. IEEE/ACM Trans Netw 15.Google Scholar
  17. 17.
    Berg, M., & Hultell, J. (2006). On selfish distributed access selection algorithms in ieee 802.11 networks. In: Proceedings of IEEE VTC.Google Scholar
  18. 18.
    Bredel, M., & Fidler, M. (2008). Lecture notes in computer science, Springer, chap A Measurement study of bandwidth estimation in IEEE 802.11g wireless LANs using the DCF, pp. 314–325.Google Scholar
  19. 19.
    Brickley, O., Rea, S., & Pesch, D. (2005). Load balancing for qos optimisation in wireless lans utilising advanced cell breathing techniques. In: Proceedings of the IEEE VTC.Google Scholar
  20. 20.
    Chandra, R., & Bahl, P. (2004). Multinet: Connecting to multiple ieee 802.11 networks using a single wireless card. In: Proceedings of IEEE Infocom.Google Scholar
  21. 21.
    Couto, S. J. D., Aguayo, D., Bicket, J., & Morris, R. (2005). A high-throughput path metric for multi-hop wireless routing. Wireless Networks, 11, 419–434.Google Scholar
  22. 22.
    Croce, D., Mellia, M., & Leonardi, E. (2009). The quest for bandwidth estimation techniques for large-scale distributed systems. In: Second Workshop on Hot Topics in Measurement & Modeling of Computer Systems (HotMetrics).Google Scholar
  23. 23.
    Draves, R., Padhye, J., & Zill, B. (2004). Routing in multi-radio, multi-hop wireless mesh networks. In: Proceedings of ACM MobiCom, Philadelphia, PA.Google Scholar
  24. 24.
    Feeney, L., & Nilsson, M. (2001). Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In: Proceedings of IEEE Infocom.Google Scholar
  25. 25.
    Gupta, A., & Mohapatra, P. (2007). Energy consumption and conservation in wifi based phones: A measurement-based study. In: Sensor and Ad Hoc Communications and Networks (SECON).Google Scholar
  26. 26.
    Gupta, D., Wu, D., Mohapatra, P., & Chuah, C. N. (2009). Experimental comparison of bandwidth estimation tools for wireless mesh networks. In: The 28th IEEE International Conference on Computer Communications (INFOCOM) mini-conference.Google Scholar
  27. 27.
    Hu, N., & Steenkiste, P. (2003). Evaluation and characterization of available bandwidth probing techniques. Selected Areas in Communications, IEEE Journal on.Google Scholar
  28. 28.
    Jain, M., & Dovrolis, C. (2002). Pathload: A measurement tool for end-to-end available bandwidth. In: Passive and Active Measurements workshop (PAM).Google Scholar
  29. 29.
    Jones, K., & Liu, L. (2007). What where wi: An analysis of millions of wi-fi access points. In: Proceedings of IEEE PORTABLE.Google Scholar
  30. 30.
    Judd, G., & Steenkiste, P. (2002). Fixing 802.11 access point selection. Computer Communication Review 32.Google Scholar
  31. 31.
    Lakshminarayanan, K., Padmanabhan, V., & Padhye, J. (2004). Bandwidth estimation in broadband access networks. In: The 4th ACM SIGCOMM Internet Measurement Conference (IMC).Google Scholar
  32. 32.
    Lee, H., Kim, S., Lee, O., Choi, S., & Lee, S. J. (2008). Available bandwidth-based association in ieee 802.11 wireless lans. In: Proceedings of ACM MSWiM, Vancouver, Canada.Google Scholar
  33. 33.
    Lee, H. K., Hall, V., Yum, K. H., Kim, K., & Kim, E. (2006). Bandwidth estimation in wireless lans for multimedia streaming services. In: IEEE ICME.Google Scholar
  34. 34.
    Lu, M., & Wu, J. (2007). Localized access point selection in infrastructure wireless lan. In: Proceedings of IEEE MILCOM.Google Scholar
  35. 35.
    Mangold, S., & Berlemann, L. (2005). Ieee 802.11k: Improving confidence in radio resource measurements. In: Proceedings of IEEE PIMRC.Google Scholar
  36. 36.
    Murty, R., Padhye, J., Chandra, R., Wolman, A., & Zill, B. (2008). Designing high performance enterprise wi-fi networks. In: Proceedings of USENIX NSDI.Google Scholar
  37. 37.
    Neilsen, M., Ovsthus, K., & Landmark, L. (2006). Field trials of two 802.11 residual bandwidth estimation methods. In: IEEE MASS.Google Scholar
  38. 38.
    Nicholson, A. J., & Noble, B. D. (2008). Breadcrumbs: Forecasting mobile connectivity. In: Proceedings of the ACM MobiCom, San Francisco, CA.Google Scholar
  39. 39.
    Nicholson, A. J., Chawathe, Y., Chen, M. Y., Noble, B. D., & Wetherall, D. (2006). Improved access point selection. In: Proceedings of the ACM MobiSys, New York, NY, USA.Google Scholar
  40. 40.
    Pang, J., Greenstein, B., Kaminsky, M., McCoy, D., & Seshan, S. (2009). Wifi-reports: Improving wireless network selection with collaboration. In: Proceedings of the ACM MobiSys.Google Scholar
  41. 41.
    Ribeiro, V. J., Riedi, R., Baraniuk, R., Navratil, J., & Cottrell, L. (2003). Pathchirp: Efficient available bandwidth estimation for network paths. In: Passive and Active Measurements Conference (PAM).Google Scholar
  42. 42.
    Sarr, C., Chaudet, C., Chelius, G., & Lassous, I. G. (2008). Bandwidth estimation for ieee 802.11-based ad hoc networks. IEEE Transactions on Mobile Computing, 7, 1228–1241.Google Scholar
  43. 43.
    Shriram, A., Murray, M., Hyun, Y., Brownlee, N., Broido, A., Fomenkov, M., & Claffy, K. (2005). Comparison of public end-to-end bandwidth estimation tools on high-speed links. In: Passive and Active Measurements Conference (PAM).Google Scholar
  44. 44.
    Strauss, J., Katabi, D., & Kaashoek, F. (2003). A measurement study of available bandwidth estimation tools. In: Proceedings of 3rd IMC.Google Scholar
  45. 45.
    Sundaresan, K., & Papagiannaki, K. (2006). The need for cross-layer information in access point selection algorithms. In: Proceedings of the IMC.Google Scholar
  46. 46.
    Vasudevan, S., Papagiannaki, K., Diot, C., Kurose, J., & Towsley, D. (2005). Facilitating access point selection in ieee 802.11 wireless networks. In: Proceedings of the IMC.Google Scholar
  47. 47.
    Villegas, E. G., Ferre, R. V., & Aspas, J. P. (2006). Load balancing in wlans through ieee 802.11k mechanisms. In: Proceedings of the IEEE ISCC.Google Scholar
  48. 48.
    Zhao, H., Garcia-Palacios, E., Wei, J., & Xi, Y. (2009). Accurate available bandwidth estimation in ieee 802.11-based ad hoc networks. Computer Communications, 32, 1050–1057.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dhruv Gupta
    • 1
  • Prasant Mohapatra
    • 1
  • Chen-Nee Chuah
    • 2
  1. 1.Department of Computer ScienceUniversity of California DavisDavisUSA
  2. 2.Department of Electrical EngineeringUniversity of California DavisDavisUSA

Personalised recommendations