Wireless Networks

, Volume 17, Issue 1, pp 1–18 | Cite as

A survey on wireless body area networks

  • Benoît Latré
  • Bart Braem
  • Ingrid Moerman
  • Chris Blondia
  • Piet Demeester


The increasing use of wireless networks and the constant miniaturization of electrical devices has empowered the development of Wireless Body Area Networks (WBANs). In these networks various sensors are attached on clothing or on the body or even implanted under the skin. The wireless nature of the network and the wide variety of sensors offer numerous new, practical and innovative applications to improve health care and the Quality of Life. The sensors of a WBAN measure for example the heartbeat, the body temperature or record a prolonged electrocardiogram. Using a WBAN, the patient experiences a greater physical mobility and is no longer compelled to stay in the hospital. This paper offers a survey of the concept of Wireless Body Area Networks. First, we focus on some applications with special interest in patient monitoring. Then the communication in a WBAN and its positioning between the different technologies is discussed. An overview of the current research on the physical layer, existing MAC and network protocols is given. Further, cross layer and quality of service is discussed. As WBANs are placed on the human body and often transport private data, security is also considered. An overview of current and past projects is given. Finally, the open research issues and challenges are pointed out.


Wireless body area networks Routing MAC 



This research is partly funded by the Fund for Scientific Research—Flanders (F.W.O.-V., Belgium) project G.0531.05.


  1. 1.
    Cypher, D., Chevrollier, N., Montavont, N., & Golmie, N. (2006). Prevailing over wires in healthcare environments: Benefits and challenges. IEEE Communications Magazine, 44(4), 56–63.CrossRefGoogle Scholar
  2. 2.
    Istepanian, R. S. H., Jovanov, E., & Zhang, Y. T. (2004). Guest editorial introduction to the special section on m-health: Beyond seamless mobility and global wireless health-care connectivity. IEEE Transactions on Information Technology in Biomedicine, 8(4), 405–414.CrossRefGoogle Scholar
  3. 3.
    Van Dam, K., Pitchers, S., & Barnard, M. (2001). Body area networks: Towards a wearable future. In Proceedings of WWRF kick off meeting, Munich, Germany, March 6–7, 2001.Google Scholar
  4. 4.
    Schmidt, R., Norgall, T., Mörsdorf, J., Bernhard, J., & von der Gün, T. (2002). Body area network ban—A key infrastructure element for patient-centered medical applications. Biomedizinische Technik. Biomedical engineering, 47(1), 365–368.CrossRefGoogle Scholar
  5. 5.
    Gyselinckx, B., Van Hoof, C., Ryckaert, J., Yazicioglu, R. F., Fiorini, P., & Leonov, V. (2005). Human++: Autonomous wireless sensors for body area networks. In: Proceedings of the IEEE custom integrated circuits conference, pp. 13–19.Google Scholar
  6. 6.
    Otto, C., Milenkovic, A. Sanders, C., & Jovanov, E. (2006). System architecture of aC. wireless body area sensor network for ubiquitous health monitoring. Journal of Mobile Multimedia, 1(4), 307–326.Google Scholar
  7. 7.
    Lo, B., & Yang, G.-Z. (2006). Body Sensor Networks: Infrastructure for life science sensing research. In Life science systems and applications workshop, 2006. IEEE/NLM, Bethesda, MD, pp. 1–2.Google Scholar
  8. 8.
    Jurik, A. D., & Weaver, A. C. (2008). Remote medical monitoring. Computer, 41(4), 96–99.CrossRefGoogle Scholar
  9. 9.
    Park, S., & Jayaraman, S. (2003). Enhancing the quality of life through wearable technology. IEEE Engineering in Medicine and Biology Magazine, 22(3), 41–48.CrossRefGoogle Scholar
  10. 10.
    Gyselinckx, B., Vullers, R., Hoof, C. V., Ryckaert, J., Yazicioglu, R. F., Fiorini, P., & Leonov, V. (2006). Human++: Emerging technology for body area networks. In Very large scale integration, 2006 IFIP international conference on, pp. 175–180.Google Scholar
  11. 11.
    IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 khz to 300 ghz. 1999.Google Scholar
  12. 12.
    Poon, C. C. Y., Zhang, Y.-T., & Bao, S.-D. (2006). A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. IEEE Communications Magazine, 44(4), 73–81.CrossRefGoogle Scholar
  13. 13.
    IEEE 802.15 WPAN Task Group 6 Body Area Networks. [Online]. Available: http://www.ieee802.org/15/pub/SGmban.htm.
  14. 14.
  15. 15.
    International Diabetes Federation (IDF) [Online] http://www.idf.org.
  16. 16.
    Latré, B., Vermeeren, G., Moerman, I., Martens, L., & Demeester, P. (2004). Networking and propagation issues in body area networks. In 11th Symposium on communications and vehicular technology in the Benelux, SCVT 2004, Ghent, Belgium, Nov 9, 2004.Google Scholar
  17. 17.
    Jovanov, E., Raskovic, D., Lords, A. O. Cox, P., Adhami, R., & Andrasik, F. (2003). Synchronized physiological monitoring using a distributed wireless intelligent sensor system. In Proceedings of the 25th annual international conference of the IEEE, 2, Engineering in medicine and biology society, pp. 1368–1371.Google Scholar
  18. 18.
    Drude, S. (2007). Requirements and application scenarios for body area networks. In: 16th IST on Mobile and wireless communications summit, Budapest, Hungary, Jul 2007, pp. 1–5.Google Scholar
  19. 19.
    Krames, E. (2002). Implantable devices for pain control: Spinal cord stimulation and intrathecal therapies. Best Practice & Research Clinical Anaesthesiology, 16(4), 619–649.CrossRefGoogle Scholar
  20. 20.
    Li, H.-B., Takizawa, K.-I., Zhen, B., & Kohno, R. (2007). Body area network and its standardization at IEEE 802.15.MBAN. In 16th IST on mobile and wireless communications summit, Budapest, Hungary, Jul 2007, pp. 1–5.Google Scholar
  21. 21.
    Theogarajan, L., Wyatt, J., Rizzo, J., Drohan, B., Markova, M., Kelly, S., et al. (2006). Minimally invasive retinal prosthesis. In IEEE international conference digest of technical papers solid-state circuits, pp. 99–108.Google Scholar
  22. 22.
    Hoyt, R., Reifman, J., Coster, T., & Buller, M. (2002). Combat medical informatics: Present and future. In Proceedings of the AMIA 2002 annual symposium, San Antonio, TX, Nov 2002, pp. 335–339.Google Scholar
  23. 23.
    Akyildiz, I. F., Su, W. Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRefGoogle Scholar
  24. 24.
    Zasowski, T., Althaus, F., Stager, M., Wittneben, A., & Troster, G. (2003). UWB for noninvasive wireless body area networks: channel measurements and results. In: IEEE conference on ultra wideband systems and technologies, Nov 2003, pp. 285–289.Google Scholar
  25. 25.
    Penzel, T., Kemp, B., Klosch, G., Schlogl, A., Hasan, J., Varri, A., et al. (2001). Acquisition of biomedical signals databases. IEEE Engineering in Medicine and Biology Magazine, 20(3), 25–32.CrossRefGoogle Scholar
  26. 26.
    Arnon, S., Bhastekar, D., Kedar, D., & Tauber, A. (2003). A comparative study of wireless communication network configurations for medical applications. IEEE [see also IEEE Personal Communications] Wireless Communications, 10(1), 56–61.Google Scholar
  27. 27.
    Gyselinckx, B., Penders, J., & Vullers, R. (2006). Potential and challenges of body area networks for cardiac monitoring, issue 6, supplement 1, ISCE 32nd annual conference, November–December 2007, pages s165–s168. Journal of Electrocardiolog, 40(6), S165–S168 (November–December 2006, iSCE 32nd annual conference).Google Scholar
  28. 28.
    Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 04(1), 18–27CrossRefGoogle Scholar
  29. 29.
    von Buren, T., Mitcheson, P. D., Green, T. C., Yeatman, E. M., Holmes, A. S., & Troster, G. (2006). Optimization of inertial micropower generators for human walking motion. IEEE Sensors Journal, 6(1), 28–38.CrossRefGoogle Scholar
  30. 30.
    International Commission on Non-ionizing Radiation Protection (ICNIRP) (1998). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 ghz). Health Physics, 74(4), 494–522.Google Scholar
  31. 31.
    Varshney, U., & Sneha, S. (2006). Patient monitoring using ad hoc wireless networks: reliability and power management. IEEE Communications Magazine, 44(4), 49–55.CrossRefGoogle Scholar
  32. 32.
    Jovanov, E., Milenkovic, A., Otto, C., & de Groen, P. C. (2005). A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2(1), 16–23.CrossRefGoogle Scholar
  33. 33.
    Bhargava, A. & Zoltowski, M. (2003). Sensors and wireless communication for medical care. In Proceedings of 14th international workshop on database and expert systems applications, Sep 2003, pp. 956–960.Google Scholar
  34. 34.
    Latré, B., Braem, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., & Demeester, P. (2007). A low-delay protocol for multihop wireless body area networks. In 4th Annual international conference on mobile and ubiquitous systems: Networking & services, 2007, Workshop PerNets, Philadelphia, PA, USA, August, 6–10, 2007, pp. 479–486.Google Scholar
  35. 35.
    Watteyne, T., Augé-Blum, S., Dohler, M., & Barthel, D. (2007). Anybody: A self-organization protocol for body area networks. In Second international conference on body area networks (BodyNets), Florence, Italy, June 11–13, 2007.Google Scholar
  36. 36.
    Takahashi, D., Xiao, Y., Hu, F., Chen, J., & Sun, Y. (2008). Temperature-aware routing for telemedicine applications in embedded biomedical sensor networks. EURASIP Journal on Wireless Communications and Networking, Vol. 2008, no. Article ID 572636, 2008, 11 p.Google Scholar
  37. 37.
    Ylisaukko-oja, A., Vildjiounaite, E., & Mantyjarvi, J. (2004). Five-point acceleration sensing wireless body area network—design and practical experiences. ISWC, 00, 184–185.Google Scholar
  38. 38.
    Dokovski, N. T., van Halteren, A. T., & Widya, I. A. (2004) Banip: Enabling remote healthcare monitoring with body area networks. In N. Guelfi, E. Astesiano, & G. Reggio (Eds.), FIDJI 2003 international workshop on scientific engineering of distributed Java applications, Luxembourg, ser. Lecture notes in Computer Science, Vol. 2952/2004. 0.4em. Heidelberg: Springer, pp. 62–72.Google Scholar
  39. 39.
    Wac, K. E., Bults, R., van Halteren, A., Konstantas, D., & Nicola, V. F. (2004). Measurements-based performance evaluation of 3g wireless networks supporting m-health services. In S. Chandra, & N. Venkatasubramanian (Eds.), Proceedings of the SPIE multimedia computing and networking , Vol. 5680, pp. 176–187.Google Scholar
  40. 40.
    Milenkovic, A., Otto, C., & Jovanov, E. (2006). Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications, Wireless Sensor Networks and Wired/Wireless Internet Communications, 29(13), 2521–2533.Google Scholar
  41. 41.
    Olugbara, O. O., Adigun, M. O., Ojo, S. O., & Mudali, P. (2007). Utility grid computing and body area network as enabler for ubiquitous rural e-healthcare service provisioning. In 9th International conference on e-Health networking, application and services, Taipei, Taiwan, June 2007, pp. 202–207.Google Scholar
  42. 42.
    Chlamtac, I., Conti, M., & Liu, J. (2003). Mobile ad hoc networking: Imperatives and challenges. Ad Hoc Networks, 1(1), 13–64.CrossRefGoogle Scholar
  43. 43.
    Akyildiz, I. F., & Kasimoglu, I. H. (2004). Wireless sensor and actor networks: Research challenges. Ad Hoc Networks, 2(2), 351–367.CrossRefGoogle Scholar
  44. 44.
    Zasowski, T. (2007). A system concept for ultra wideband (UWB) body area networks.PhD Thesis, ETH Zürich, No. 17259.Google Scholar
  45. 45.
    Yang, G.-Z. (eds). (2006). Body Sensor Networks. plus 0.5 em minus 0.4 em. London: Springer.Google Scholar
  46. 46.
    Ruzzelli, A. G., Jurdak, R., O’Hare, G. M., & Stok, P. V. D. (2007). Energy-efficient multi-hop medical sensor networking. In HealthNet ’07: Proceedings of the 1st ACM SIGMOBILE international workshop on systems and networking support for healthcare and assisted living environments(pp. 37–42). 0.5 em minus 0.4 em. New York, NY: ACM.Google Scholar
  47. 47.
    Shah, R. C.,& Yarvis, M. (2006). Characteristics of on-body 802.15.4 networks. In 2nd IEEE workshop on Wireless Mesh Networks, 2006. WiMesh 2006, pp. 138–139. Reston, VA.Google Scholar
  48. 48.
    Rappaport, T. S. (2002). Wireless communication: Principles and practice, 2nd edn. Englewood Cliffs NJ: Prentice Hall.Google Scholar
  49. 49.
    Gupta, S. K. S., Lalwani, S., Prakash, Y., Elsharawy, E.,& Schwiebert, L. (1997). Towards a propagation model for wireless biomedical applications. In Communications, 2003. ICC ’03. IEEE International Conference on, Vol. 3, pp. 1993–1997.Google Scholar
  50. 50.
    Tang, Q., Tummala, N., Gupta, S. K. S., & Schwiebert, L. (2005) Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Transactions on Biomedical Engineering, 52(7), 1285–1294.Google Scholar
  51. 51.
    Johansson, A. J. (2002). Wave-propagation from medical implants-influence of body shape on radiation pattern. In 24th Annual conference and the annual fall meeting of the biomedical engineering society, Proceedings of the second joint EMBS/BMES conference, Vol. 2, pp. 1409–1410.Google Scholar
  52. 52.
    Reusens, E., Joseph, W., Vermeeren, G., Martens, L., Latré, B., Braem, B., et al. (2007). Path-loss models for wireless communication channel along arm and torso: Measurements and simulations. In: IEEE antennas and propagation society international symposium, Honolulu, HI, June 9–15, 2007, pp. 336–339.Google Scholar
  53. 53.
    Roelens, L., Van den Bulcke, S., Joseph, W., Vermeeren, G., & Martens, L. (2006). Path loss model for wireless narrowband communication above flat phantom. Electronics Letters, 42(1), 10–11.CrossRefGoogle Scholar
  54. 54.
    Zasowski, T., Meyer, G., Althaus, F., Wittneben, A. (2005) Propagation effects in UWB body area networks. In: IEEE international conference on Ultra-Wideband, Sep 2005, pp. 16–21.Google Scholar
  55. 55.
    Fort, A., Ryckaert, J., Desset, C., De Doncker, P. Wambacq, P., & Van Biesen, L. (2006). Ultra-wideband channel model for communication around the human body. IEEE Journal on Selected Areas in Communications, 24, 927–933.CrossRefGoogle Scholar
  56. 56.
    Zasowski, T., Meyer, G., Althaus, F., & Wittneben, A. (2006). UWB signal propagation at the human head. IEEE Transactions on Microwave Theory and Techniques, Apr 2006.Google Scholar
  57. 57.
    Braem, B., Latré, B. Moerman, I., Blondia, C., Reusens, E., Joseph, W., et al. (2007). The need for cooperation and relaying in short-range high path loss sensor networks. In First international conference on sensor technologies and applications (SENSORCOMM 2007), Valencia, Spain, Oct 14–20, 2007, pp. 566–571.Google Scholar
  58. 58.
    Fort, A., Desset, C., Ryckaert, J., De Doncker, P., Van Biesen, L., & Wambacq, P. (2005). Characterization of the ultra wideband body area propagation channel. In IEEE international conference on Ultra-Wideband , Sep 2005.Google Scholar
  59. 59.
    Di Renzo, M., Buehrer, R. M., & Torres, J. (2007). Pulse shape distortion and ranging accuracy in uwbbased body area networks for fullbody motion capture and gait analysis. In: IEEE Globecom 2007, Nov 2007, pp. 3775 – 3780.Google Scholar
  60. 60.
    Neirynck, D. (2006). Channel characterisation and physical layer analysis for body and personal area network development. Ph.D. dissertation, University of Bristol, UK.Google Scholar
  61. 61.
    Zimmerman, T. (1996). Personal area networks: Nearfield intrabody communication. IBM Systems Journal, 35(3), 609–617.CrossRefGoogle Scholar
  62. 62.
    Wegmueller, M. S., Kuhn, A., Froehlich, J., Oberle, M., Felber, N., Kuster, N., et al. (2007). An attempt to model the human body as a communication channel. IEEE Transactions on Biomedical Engineering, 54(10), 1851–1857.CrossRefGoogle Scholar
  63. 63.
    Hachisuka, K., Terauchi, Y., Kishi, Y., Hirota, T., Sasaki, K., Hosaka, H. et al. (2005). Simplified circuit modeling and fabrication of intrabody communication devices. In The 13th international conference on solid-state sensors, actuators and microsystems, 2005. Digest of Technical Papers. TRANSDUCERS ’05, Vol. 1, June 2005, pp. 461–464.Google Scholar
  64. 64.
    Zhong, L., El-Daye, D., Kaufman, B., Tobaoda, N., Mohamed, T., & Liebschner, M. (2007). Osteoconduct: Wireless body-area communication based on bone conduction. In Proceedings of international conference body area networks (BodyNets), June 2007.Google Scholar
  65. 65.
    Falck, T., Baldus, H., Espina, J., & Klabunde, K. (2007). Plug’n play simplicity for wireless medical body sensors. Mobile Networks and Applications, 12(2), 143–153.CrossRefGoogle Scholar
  66. 66.
    Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: A survey. IEEE Communications Magazine, 44(4), 115–121.CrossRefGoogle Scholar
  67. 67.
    Baronti, P., Pillai, P., Chook, V., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15.4 and zigbee standards. Computer Communications, 30(7), 1665–1695.CrossRefGoogle Scholar
  68. 68.
    Johansson, P., Kazantzidis, M., Kapoor, R., & Gerla, M. (2001). Bluetooth: An enabler for personal area networking. IEEE Network, 15(5), 28–37.CrossRefGoogle Scholar
  69. 69.
    IEEE 802.15.4-2003: IEEE Standard for Information Technology—Part 15.4: Wireless medium access control and physical layer specifications for low rate wireless personal area networks.Google Scholar
  70. 70.
    Alliance, ZigBee, official webpage: http://www.zigbee.or.
  71. 71.
    Timmons, N. F., & Scanlon W. G. (2004). Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking. In First annual IEEE communications society conference on sensor and ad hoc communications and networks, 2004. IEEE SECON, pp. 16–24.Google Scholar
  72. 72.
    Li, H., & Tan, J. (2005). An ultra-low-power medium access control protocol for body sensor network. In 27th Annual international conference of the engineering in medicine and biology society, 2005. IEEE-EMBS, Shanghai, pp. 2451–2454.Google Scholar
  73. 73.
    Lamprinos, I. E., Prentza, A., Sakka, E., & Koutsouris, D. (2005). Energy-efficient MAC protocol for patient personal area networks. In 27th Annual international conference of the engineering in medicine and biology society, 2005. IEEE-EMBS, Shanghai, pp. 3799–3802.Google Scholar
  74. 74.
    Omeni, O. C., Eljamaly, O., & Burdett, A. J. (2007). Energy efficient medium access protocol for wireless medical body area sensor networks. In 4th IEEE/EMBS international summer school and symposium on medical devices and biosensors. ISSS-MDBS 2007, Cambridge, UK, pp. 29–32.Google Scholar
  75. 75.
    Li, H., & Tan, J. (2007). Heartbeat driven medium access control for Body Sensor Networks. In HealthNet ’07: Proceedings of the 1st ACM SIGMOBILE international workshop on systems and networking support for healthcare and assisted living environments. Puerto Rico, USA: ACM, 11 June, pp. 25–30.Google Scholar
  76. 76.
    Golmie, N., Cypher, D., & Rebala, O. (2005). Performance analysis of low rate wireless technologies for medical applications. Computer Communications, 28(10), 1266–1275.CrossRefGoogle Scholar
  77. 77.
    Cavalcanti, D., Schmitt, R., & Soomro, A. (2007). Performance analysis of 802.15.4 and 802.11e for body sensor network applications. In 4th International workshop on wearable and implantable Body Sensor Networks (BSN 2007), Vol. 13, pp. 9–14. Berlin: Springer.Google Scholar
  78. 78.
    Farella, E., Pieracci, A., Benini, L., & Acquaviva, A. (2006). A wireless body area sensor network for posture detection. In ISCC ’06: Proceedings of the 11th IEEE symposium on computers and communications. pp. 454–459. minus 0.4em. Washington, DC: IEEE Computer Society.Google Scholar
  79. 79.
    Heile, B. (2007). IEEE 802.15 TG 6 PAR, IEEE15-07-0575/r9, IEEE-SA, December.Google Scholar
  80. 80.
    Lewis, D. (2008). 802.15 TG 6 Call for applications—Response summary, IEEE15-08-0407r6, IEEE-SA, July.Google Scholar
  81. 81.
    Astrin, A. (2008). 802.15 TG 6 Call for proposals (CFP), IEEE15-08-0829r1, IEEE-SA, November.Google Scholar
  82. 82.
    Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.CrossRefGoogle Scholar
  83. 83.
    Ren, H., & Meng, M. Q. H. (2006). Rate control to reduce bioeffects in wireless biomedical sensor networks. In 3rd Annual international conference on mobile and ubiquitous systems—Workshops, San Jose, CA, pp. 1–7.Google Scholar
  84. 84.
    Bag, A., & Bassiouni, M. A. (2006). Energy efficient thermal aware routing algorithms for embedded biomedical sensor networks. In 2006 IEEE international conference on mobile adhoc and sensor systems (MASS), Vancouver, BC, pp. 604–609.Google Scholar
  85. 85.
    Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences, pp. 8020–8024.Google Scholar
  86. 86.
    Moh, M., Culpepper, B. J., Dung, L., Moh, T.-S., Hamada, T., & Su, C.-F. (2005). On data gathering protocols for in-body biomedical sensor networks. In Global telecommunications conference. GLOBECOM ’05. IEEE, 5.Google Scholar
  87. 87.
    Madan, R., Cui, S., Lall, S., & Goldsmith, N. A. (2006). Cross-layer design for lifetime maximization in interference-limited wireless sensor networks. IEEE Transactions on Wireless Communications, 5(11), 3142–3152.CrossRefGoogle Scholar
  88. 88.
    Melodia, T., Vuran, M., & Pompil, D. (2005). The state of the art in cross-layer design for wireless sensor networks. In EuroNGI workshop on wireless and mobility, ser. LNCS 3883, pp. 78–92.Google Scholar
  89. 89.
    De Poorter, E., Latré, B., Moerman, I., & Demeester, P. (2008). Sensor and ad-hoc networks: Theoretical and algorithmic aspects, ser. Lecture Notes Electrical Engineering. Springer, June 2008, Vol. 7, Chap. Universal Framework for Sensor Networks.Google Scholar
  90. 90.
    Latré, B., De Poorter, E., Moerman, I., & Demeester, P. (2007). Mofban: A lightweight framework for body area networks. Lecture Notes in Computer Science, Proceedings of Embedded and Ubiquitous Computing (EUC 2007), 4808, 610–622.Google Scholar
  91. 91.
    Chen, D., & Varshney, P. K. (2004). Qos support in wireless sensor networks: A survey. In International conference on wireless networks (ICWN 2004). 1em plus 0.5em minus 0.4em. CSREA Press, June 2004.Google Scholar
  92. 92.
    Braem, B., Latré, B., Blondia, C., Moerman, I., & Demeester, P. (2008). Improving reliability in multi-hop body sensor networks. In Second international conference on sensor technologies and applications (SENSORCOMM 2008), Cap Esterel, France, August, 25–31, 2008, pp. 342–347.Google Scholar
  93. 93.
    Zhou, G., Lu, J., Wan, C.-Y., Yarvis, M., & Stankovic, J. (2008). Bodyqos: Adaptive and radio-agnostic qos for body sensor networks. April 2008, pp. 565–573.Google Scholar
  94. 94.
    Cherukuri, S., Venkatasubramanian, K. K., & Gupta, S. K. S. (2003). Biosec: A biometric based approach for securing communication in wireless networks of biosensors implanted in the human body. In Proceedings of international conference on parallel processing workshops, Oct 2003, pp. 432–439.Google Scholar
  95. 95.
    Balasubramanyn, V. B., Thamilarasu, G., & Sridhar, R. (2007). Security solution for data integrity inwireless biosensor networks. In 27th International conference on distributed computing systems workshops. ICDCSW ’07, Toronto, Ontario, June 2007, pp. 79–79.Google Scholar
  96. 96.
    Singelée, D., Latré, B., Braem, B., De Soete, M., De Cleyn, P., & Preneel, B. et al. (2008). A secure cross-layer protocol for multi hop wireless body area networks. In 7th International conference on ad-hoc networks & wireless (ADHOCNOW 2008), Vol. LNCS 5198, France, Sep 11–13, 2008, pp. 94–107.Google Scholar
  97. 97.
    Guennoun, M., Zandi, M., & El-Khatib, K. (2008). On the use of biometrics to secure wireless biosensor networks. In 3rd International conference on information and communication technologies: From theory to applications. ICTTA 2008, Damascus, Apr 2008, pp. 1–5.Google Scholar
  98. 98.
    Bao, S.-D., Poon, C. C. Y., Zhang, Y.-T., & Shen, L.-F. (2008). Using the timing information of heartbeats as an entity identifier to secure body sensor network. IEEE Transactions on Information Technology in Biomedicine, 12(6), 772–779.CrossRefGoogle Scholar
  99. 99.
    Bui, F. M., & Hatzinakos, D. (2008). Biometric methods for secure communications in Body Sensor Networks: Resource-efficient key management and signal-level data scrambling. In EURASIP Journal on Advances in Signal Processing, Vol. 2008, article ID 529879, 16 p.Google Scholar
  100. 100.
    Moteiv [online] http://www.moteiv.co.
  101. 101.
    sentilla [online] http://www.sentilla.co.
  102. 102.
    Gao, T., Greenspan, D., Welsh, M., Juang, R. R., & Alm, A. (2005). Vital signs monitoring and patient tracking over a wireless network. In 27th Annual international conference of the engineering in medicine and biology society. IEEE-EMBS 2005, Shanghai, 2005, pp. 102–105.Google Scholar
  103. 103.
    Lorincz, K., Malan, D. J., Fulford-Jones, T. R. F., Nawoj, A., Clavel, A., Shnayder, V. et al. (2004). Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Computing, 3(4),16–23.CrossRefGoogle Scholar
  104. 104.
    Venkatasubramanian, K., Deng, G., Mukherjee, T., Quintero, J., Annamalai, V., & Gupta, S. (2005). Ayushman: A wireless sensor network based health monitoring infrastructure and testbed. In Distributed Computing in Sensor Systems, Vol. 3560/2005, pp. 406–407, Berlin: Springer.Google Scholar
  105. 105.
    van Halteren, A. T., Bults, R. G. A., Wac, K. E., Konstantas, D., Widya, I. A., Dokovski, N. T., Koprinkov, G. T., Jones V.M., Herzog R. (2004) Mobile patient monitoring: The mobihealth system. The Journal on Information Technology in Healthcare, 2(5), 365–373.Google Scholar
  106. 106.
    BANET project website [online] http://www.banet.f.
  107. 107.
    Falck, T., Espina, J., Ebert, J. P., & Dietterle, D. (2006). BASUMA—The sixth sense for chronically ill patients. In International Workshop on Wearable and Implantable Body Sensor Networks. BSN 2006, Cambridge, MA, April 3–5, 2006, pp. 57–60.Google Scholar
  108. 108.
    Farella, E., Pieracci, A., Benini, L., Rocchi, L., Acquaviva, A. (2008). Interfacing human and computer with wireless body area sensor networks: The wimoca solution. Multimedia Tools and Applications, 38(3), 337–363.CrossRefGoogle Scholar
  109. 109.
    IBBT IM3-project [online] http://www.projects.ibbt.be/im.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Benoît Latré
    • 1
  • Bart Braem
    • 2
  • Ingrid Moerman
    • 1
  • Chris Blondia
    • 2
  • Piet Demeester
    • 1
  1. 1.Department of Information TechnologyGhent University/IBBTGentBelgium
  2. 2.Department of Mathematics and Computer ScienceUniversity of Antwerp/IBBTAntwerpBelgium

Personalised recommendations