Advertisement

Wireless Networks

, Volume 16, Issue 7, pp 1913–1927 | Cite as

Statistical reliability for energy efficient data transport in wireless sensor networks

  • Zvi Rosberg
  • Ren Ping LiuEmail author
  • Tuan Le Dinh
  • Yi Fei Dong
  • Sanjay Jha
Article

Abstract

Typical wireless sensor network deployments are expected to be in unattended terrains where link packet error rate may be as high as 70% and path length could be up to tens of hops. In coping with such harsh conditions, we introduce a new notion of statistical reliability to achieve a balance between data reliability and energy consumption. Under this new paradigm, the energy efficiency of a comprehensive set of statistically reliable data delivery protocols are analyzed. Based on the insight gained, we propose a hybrid system which combines the energy efficient and statistically reliable transport (eESRT) protocol with the implicit and explicit ARQ (ieARQ) protocol. This hybrid system adaptively switches between eESRT and ieARQ machanisms according to a dynamic hop threshold H_sw proposed in this work. Simulation and experiment results confirm our theoretical findings and demonstrate the advantages the hybrid system in boosting energy efficiency, reducing end to end delay, and in overcoming the “avalanche” effect.

Keywords

Wireless sensor networks Reliability Energy efficiency ARQ QoS 

References

  1. 1.
    “IEEE standard 802.15.4,” 2003.Google Scholar
  2. 2.
    “CC2420 Product information and data sheet,” chipcon, available at: http://www.chipcon.com/.
  3. 3.
  4. 4.
    Akan, O., & Akyildiz, I. (2005). Event-to-sink reliable transport in wireless sensor networks. IEEE/ACM Transactions on Networking, 13(5), 1003–1016.CrossRefGoogle Scholar
  5. 5.
    Burton, H., & Sullivan, D. (1972). Error and error control. Proceeding of IEEE, 60, 1293–1301.CrossRefGoogle Scholar
  6. 6.
    Cao, Q., He, T., Fang, L., Abdelzaher, T., Stankovic J., & Son, S. (2006) Efficiency centric communication model for wireless sensor networks. Proceedings of INFOCOM ’06, 1–12, April.Google Scholar
  7. 7.
    Le Dinh, T., Hu, W., Sikka, P., Corke, P., Overs, L., & Brosnan, S. Design and deployment of a remote robust sensor network: Experiences from an outdoor water quality monitoring network,” second IEEE workshop on practical issues in building sensor network applications (SenseApp 2007), 15–18th October 2007 Dublin, Ireland (to appear).Google Scholar
  8. 8.
    Lin, S., Costello, D., & Miller, M. (1984). Automatic-repeat-request error-control schemes. IEEE Communications Magazine, 22(12), 5–17.CrossRefGoogle Scholar
  9. 9.
    Liu, R. P., Zic, J., Collings, I. B., Dong, A. Y., & Jha, S. (2008). Efficient reliable data collection in wireless sensor networks. IEEE VTC2008-fall, Calgary, Canada, September.Google Scholar
  10. 10.
    Liu, R. P., Rosberg, Z., Collings, I. B., Wilson, C., Dong, A. Y., & Jha, S. (2008). Overcoming radio link asymmetry in wireless sensor networks. IEEE PIMRC2008, Cannes, France, September.Google Scholar
  11. 11.
    Pottie, G. J., & Kaiser, W. J. (2000). Wireless integrated netwrok sensors. Communications of the ACM, 43(5), 51–58.CrossRefGoogle Scholar
  12. 12.
    Rosberg, Z., & Side, M. (1990). Selective-Repeat ARQ: The joint distribution of the transmitter and the receiver resequencing buffer occupancies. IEEE Transactions on Communications 38(9), 1430–1438.CrossRefGoogle Scholar
  13. 13.
    Rosberg, Z., Liu, R., Tuan, L. D., Jha, S., Dong, A. Y., & Zic, J. (2007). “Energy efficient statistically reliable hybrid transport protocol for sensed data streaming,” CSIRO ICT Centre Pub. no. 07/213, June 2007. Available at: http://www.fairflows.com/rosberg/papers/eRDC.pdf.
  14. 14.
    Rosberg, Z., Liu, R. P., Dong, A., Le Dinh, T., & Jha, S. (2008). ARQ with implicit and explicit ACKs in sensor networks. New Orleans: IEEE Globecom 2008.Google Scholar
  15. 15.
    Stann, R., & Heidemann, J. (2003). RMST: reliable data transport in sensor networks. Proceedings of the first IEEE international workshop on sensor network protocols and applications, Anchorage, Alaska, pp. 102–112.Google Scholar
  16. 16.
    Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., & Culler, D. (2004). An analysis of a large scale habitat monitoring application. In: Proceedings of the 2nd international conference on embedded networked sensor systems (SenSys04), pp. 214–226. ACM Press.Google Scholar
  17. 17.
    Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K. Burgess, S., & Dawson, T. (2005) A macroscope in the redwoods. Proceedings of the 3rd international conference on embedded networked sensor systems (SenSys05), San Diego, California.Google Scholar
  18. 18.
    Wan, C.-Y., Campbell, A., & Krishnamerthy, L. (2002). PSFQ: A reliable transport protocol for wireless sensor networks. Proceedings of the first ACM international workshop on wireless sensor networks and applications, Atlanta, Georgia, pp. 1–11.Google Scholar
  19. 19.
    Wark, T., Crossman, C., Hu, W., Guo, Y., Valencia, P., Sikka, P., Corke, P., Lee, C., Henshall, J., Grady, J. O., Reed, M., & Fisher, A. (2007). The design and evaluation of a mobile sensor/actuator network for autonomous animal control. In: ACM/IEEE international conference on information processing in sensor networks (IPSN), pp. 206–215.Google Scholar
  20. 20.
    Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., & Welsh, M. (2006). Fidelity and yield in a volcano monitoring sensor network. Proceedings of the 7th USENIX symposium on operating systems design and implementation (OSDI 2006), Seattle, November.Google Scholar
  21. 21.
    Woo, A., & Cullur, D. (2001) A transmission control scheme for media access in sensor networks. Proceeding of ACM MobiComm ’01, July.Google Scholar
  22. 22.
    Woo, A., Tong, T., & Culler D. (2003) Taming the underlying challenges of reliable multihop routing in sensor networks. In: SenSys 03: Proceedings of the 1st international conference on embedded networked sensor systems, pp. 1427, ACM Press.Google Scholar
  23. 23.
    Yoshimoto, M., Takine, T., Takahashi, Y., & Hasegawa, T. (1993). Waiting time and queue length distributions for go-back-N and selective-repeat ARQ protocols. IEEE Transactions on Communications, 41(11), 1687–1693.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Zvi Rosberg
    • 1
  • Ren Ping Liu
    • 1
    Email author
  • Tuan Le Dinh
    • 2
  • Yi Fei Dong
    • 2
  • Sanjay Jha
    • 2
  1. 1.ICT CentreCSIROSydneyAustralia
  2. 2.School of Computer Science and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations