Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A medium access protocol exploiting multiuser-detection in CDMA ad-hoc networks

  • 108 Accesses

  • 3 Citations

Abstract

A new medium access protocol which exploits the physical layer capability of multiuser detection is proposed to help in improving the throughput/delay performance of ad-hoc networks. When more than one node has packets buffered for a common node in the neighborhood, all such nodes can simultaneously transmit their packets to the common receiver after reserving their surrounding channel. This is achieved in our protocol by extending the (sender-initiated) CSMA/CA collision avoidance framework by the receiver-initiated medium access technique and incorporating the transmission power control. We analyze the improvement in the throughput that can be achieved over the basic sender-initiated collision avoidance protocol in the network. Since the throughput improvement via multi-packet reception is influenced by the network layer activity as well, the performance of our protocol rolls back to that of the basic sender-initiated protocol in case of no coordination from the network layer. For the evaluation of performance of our protocol we simulate ad-hoc networks for different network topologies and traffic configurations. We observe the scheme to be capable in significantly improving the throughput/delay performance of the network.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    Nodes at the center of network are heavily used when shortest-path routing protocol is employed [22].

References

  1. 1.

    Bajaj, L., Takai, M., Ahuja, R., Bagrodia, R., & Gerla, M. (1998). GloMoSim: A scalable network simulation environment. Technical Report, 990027, UCLA Computer Science Department.

  2. 2.

    Bertossi, A. A., & Bonuccelli, M. A. (1995). Code assignment for hidden terminal interference avoidance in multihop packet radio networks. IEEE/ACM Transactions on Networking, 3(4), 441–449.

  3. 3.

    Bharghavan, V., Demers, A., Shenker, S., & Zhang, L. (1994). MACAW: A media access protocol for wireless LANs. In Proceedings of ACM SIGCOMM, Vol. 212, p. 25.

  4. 4.

    http://www.mathworld.wolfram.com/Circle-CircleIntersection.html.

  5. 5.

    Tse, David N. C., & Hanly, S. V. (1999). Linear multiuser receivers: Effective interference, effective bandwidth and user capacity. IEEE Transactions on Information Theory, 45(2), 641–657.

  6. 6.

    ElBatt, T., & Ephremides, A. (2002). Joint scheduling and power control for wireless ad-hoc networks. Proceedings of IEEE INFOCOM, 2, 976–984.

  7. 7.

    Garcia-Luna-Aceves, J. J., & Tzamaloukas, A. (2002). Receiver-initiated collision avoidance in wireless networks. Wireless Networks, 8(2–3), 249–263.

  8. 8.

    Garcia-Luna-Aceves, J. J., & Tzamaloukas, A. (1999). Reversing the collision-avoidance handshake in wireless networks. Proceedings of MOBICOM, pp. 120–131.

  9. 9.

    Hasan, A., Yang, K., & Andrews, J. G. (2003). Clustered CDMA ad hoc networks without closed-loop power control. Proceedings of IEEE MILCOM, 2, 1030–1035.

  10. 10.

    Jiang, S., & Hsiao, Man-Tung T. (1995). Performance evaluation of a receiver-based handshake protocol for CDMA networks. IEEE Transaction on Communications, 43(6), 2127–2138.

  11. 11.

    He, J., & Pung, H. K. (2003). One/zero fairness problem of MAC protocols in multi-hop ad hoc networks and its solution. In Proceedings of International Conference on Wireless Networks, pp. 479–485.

  12. 12.

    Kleinrock, L., & Tobagi, F. A. (1975). Packet switching in radio channels: Part I-carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Transaction on Communications, COM-23(12), 1400–1416.

  13. 13.

    Kuan, E.-L., & Hanzo, L. (2003). Burst-by-burst adaptive multiuser detection CDMA: A framework for existing and future wireless standards. Proceedings of IEEE, 91(2), 278–302.

  14. 14.

    Hu, L. (1993). Distributed code assignments for CDMA packet radio networks. IEEE/ACM Transaction on Networking, 1(6), 668–677.

  15. 15.

    Lott, M., Halfmann, R., Schultz, E., & Radimirsch, M. (2001). Medium access and radio resource management for ad hoc networks based on UTRA TDD. In Proceedings of International Conference on Mobile AdHoc Networking & Computing, pp. 76–86.

  16. 16.

    Jao-Ng, M., & Lu, I.-Tai. (1999). Spread spectrum medium access protocol with collision avoidance in mobile ad-hoc networks. IEEE INFOCOM, 2, 776–783.

  17. 17.

    Madhow, U., & Honig, M. L. (1994). MMSE interference suppression for direct-sequence spread-spectrum CDMA. IEEE Transactions on Communications, 42(12), 3178–3188.

  18. 18.

    Moshavi, S. (1996). Multi-user detection for DS-CDMA communications. IEEE Communications Magazine, 34(10), 124–136.

  19. 19.

    Muqattash, A., & Krunz, M. (2003). CDMA-based MAC protocol for wireless ad hoc networks. In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc’03, Annapolis, Maryland, USA, June 1–3, 2003, pp. 153–164. New York, NY: ACM.

  20. 20.

    Naqvi, S. H. R., & Patnaik, L. M. (2006) A distributed channel access protocol for ad-hoc networks with feedback power control. IEEE Transaction on Mobile Computing, 5(10), 1448–1459.

  21. 21.

    Orfanos, G., Habetha, J., & Liu, L. (2004) MC-CDMA based IEEE 802.11 wireless LAN. In Proceedings of 12th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS’04), pp. 400–405.

  22. 22.

    Pham, P. P., & Perreau, S. (2003). Performance analysis of reactive shortest path and multipath routing mechanism with load balance. Proceedings of IEEE INFOCOM, 1, 251–259.

  23. 23.

    Poojary, N., Krishnamurthy, S. V., & Dao, S. (2001). Medium access control in a network of ad hoc mobile nodes with heterogeneous power capabilities. Proceedings of IEEE International Conference on Communication (ICC), 3, 872–877.

  24. 24.

    Rodoplu, V., & Meng, T. H. (2000). Position based CDMA with multiuser detection (P-CDMA/MUD) for wireless ad hoc networks. In Proceedings of IEEE International Symposium on Spread Spectrum Techniques and Applications, Vol. 1, pp. 336–340.

  25. 25.

    Sousa, E., & Silvester, J. A. (1990). Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network. IEEE Journol on Selected Areas in Communications, 8(5), 762–771.

  26. 26.

    Sousa, E., & Silvester, J. A. (1988). Spreading code protocols for distributed spread-spectrum packet radio networks. IEEE Transaction on Communications 36(3), 272–281.

  27. 27.

    Talucci, F., & Gerla, M. (1997). MACA-BI (MACA by invitation): A receiver oriented access protocol for wireless multihop networks. Proceedings of IEEE PIMRC, 2, 435–439.

  28. 28.

    Wang Y., & Garcia-Luna-Aceves, J. J. (2002). A new hybrid channel access scheme for ad hoc networks. In Proceedings of Med-Hoc-Net, Sardegna, Italy.

Download references

Author information

Correspondence to S. Hasan Raza Naqvi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Naqvi, S.H.R., Patnaik, L.M. A medium access protocol exploiting multiuser-detection in CDMA ad-hoc networks. Wireless Netw 16, 1723–1737 (2010). https://doi.org/10.1007/s11276-009-0224-8

Download citation

Keywords

  • Wireless ad-hoc networks
  • Multiuser detection
  • Medium access protocol
  • Performance analysis