Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Feedback-assisted MAC protocol for real time traffic in high rate wireless personal area networks

Abstract

During the past decade, there has been much standardization effort for indoor or shot-range networks, as communication devices and applications for such networks populate. As a prominent example of these activities, the IEEE 802.15.3 Task Group (TG) published a standard for high-rate wireless personal area network (HR-WPAN). To support strictly timed multimedia services, the TG adopts a time-slotted channel access protocol controlled by a central device (DEV). Although the channel time allocation algorithm plays a key role in deciding the network performance, it remains unspecified in the standard. Therefore, in this paper, we propose a novel feedback-assisted channel time allocation method for HR-WPAN. After initial channel times are allocated based on packet inter-arrival time statistics, the allocation is dynamically adjusted by utilizing feedback information from each DEV. The feedback information includes the buffer status, the packet transmission delay, and the physical transmission rate. By utilizing this feedback information, the central DEV can allocate sufficient channel time for transmissions of pending packets from a DEV. Moreover, the allocated channel times can be synchronized to the packet arrival times so that the overall transmission delay is reduced. To cope with time-varying wireless channels, a dynamic rate selection algorithm assisted by physical layer information is proposed in this paper. Performance evaluation is carried out through extensive simulations, from which significant performance enhancements are observed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Gandolfo, P. & Allen, J. (2002). “802.15.3 Overview/Update,” The WiMEDIA alliance.

  2. 2.

    Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY). (2002). Specifications for Wireless Personal Area Networks (WPANs), IEEE Std. 802.15.1.

  3. 3.

    Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY). (2003). Specifications for High Rate Wireless Personal Area Networks (WPANs), IEEE Std. 802.15.3.

  4. 4.

    Federal Communications Commission (FCC 02-48). (2002). “Revision of Part 15 regarding ultra-wideband transmission,” ET Docket 98–153, First report and order.

  5. 5.

    Batra, A. (2003). “Multi-band OFDM physical layer proposal,”. IEEE 802.15-03/267r6.

  6. 6.

    Mangharam, R. & Demirhan, M. (2002). “Performance and simulation analysis of 802.15.3 QoS,” IEEE 802.15-02/297r1.

  7. 7.

    Kang, C. G., Ahn, C. W., Jang, K. H., & Kang, W. S. (2000). Contention-free distributed dynamic reservation MAC protocol with deterministic scheduling (C-FD3R MAC) for wireless ATM networks. IEEE Journal on Selected Areas in Communications, 18, 1623–1635. doi:10.1109/49.872951.

  8. 8.

    Torok, A., Vajda, L., Youn, K. -J., & June S. -D. (2004). “Superframe formation algorithms in 802.15.3 networks,”. IEEE WCNC’04 (pp. 1008–1013). Atlanta, Georgia.

  9. 9.

    Rhee, S. H., Chung, K., Kim, Y., Yoon, W., & Chang, K. S. (2004).”An application-aware MAC scheme for IEEE 802.15.3 high-rate wpan,”. In Proc. IEEE WCNC’04 (pp. 1018–1023). Atlanta, Georgia.

  10. 10.

    Moradi, S., & Wong, V. W. S. (2007).”Technique to Improve MPEG-4 Traffic Schedulers in IEEE 802.15.3 WPANs,”. In Proc. IEEE ICC’07. Glasgow, Scotland.

  11. 11.

    Brabenac, C. (2002). “MAC Performance enhancements for Alt-PHY,” IEEE 802.15-02/472r0.

  12. 12.

    Kim, B. -S., Fang, Y., & Wong, T. F. (2004)”Rate-adaptive MAC protocol in high rate personal area networks,”. In Proc. IEEE WCNC’04 (pp. 1394–1399). Atlanta, Georgia.

  13. 13.

    Liu, K. -H., Rutagemwa, H., Shen, X., & Mark, J. W. (2007). Efficiency and goodput analysis of Dly-ACK in IEEE 802.15.3. IEEE Transactions on Vehicular Technology, 56(6), 3888–3898. doi:10.1109/TVT.2007.904547.

  14. 14.

    Holland, G., Vaidya, N., & Bahl, P. (2001).”A rate-adaptive MAC protocol for multi-hop wireless networks,”. In Proc. ACM MOBICOM’01 (pp. 236–251).

  15. 15.

    IEEE 802.11 WG. (2004), Draft supplement to STANDARD FOR telecommunications and information exchange between systems—LAN/MAN Specific requirements—Part 11: Wireless Medium Access Control (MAC) and physical layer (PHY) specifications: Medium Access Control (MAC) Enhancements for Quality of Service (QoS), IEEE 802.11e/D8.0.

  16. 16.

    Grilo, A., Macedo M., & Nunes, M. (2003). “A scheduling algorithm for QoS support in IEEE802.11E networks,” IEEE wireless communications (pp. 36–43).

  17. 17.

    Fitzek, F. H. P., & Reisslein, M. (2001). MPEG-4 and H.263 video traces for network performance evaluation. IEEE Network, (pp. 40–54). doi:10.1109/65.967596.

  18. 18.

    Kim, B. -S., Fang, Y., Wong, T. F., & Kwon, Y. (2003).”Dynamic fragmentation scheme for rate-adaptive wireless LANs,”. In Proc. IEEE PIMRC’03 (pp. 2591–2595).

  19. 19.

    DVD-Video Audio Coding. http://www.disctronics.co.uk/technology/dvdvideo/dvdvid_audenc.htm.

  20. 20.

    MPEG-4 and H.263 Video Traces for Network Performance Evaluation (2002). http://www-tkn.ee.tu-berlin.de/research/trace/trace.html.

  21. 21.

    Rappaport, T. S. (1996).”Wireless communications: principles and practices,” (pp. 69–185). Prentice Hall.

  22. 22.

    K. Siwiak, & Ellis, J. (2002). “SG3a Alternate PHY selection criteria,” IEEE P802.15-02/105r20.

  23. 23.

    Punnoose, R. J., Nikitin, P. V., & Stancil, D. D. (2000).”Efficient simulation of ricean fading within a packet simulator,”. In Proc. IEEE VTC’00 (pp. 764–767).

  24. 24.

    Proakis, J. G. (1995) “Digital communications” 3rd ed. New York:McGraw-Hill (pp. 257–282).

  25. 25.

    Lo, S. -C., Lee, G., & Chen, W. -T. (2003). An Efficient Multipolling Mechanism for IEEE 802.11 Wireless LANs. IEEE Transactions on Computers, 76, 4–778.

  26. 26.

    Koutsakis, P., Psychis, S., & Paterakis, M. (2001).”On the integration of MPEG-4 video stream with voice and e-mail data packet traffic over wireless picocellular networks,”. In Proc. IEEE PIMRC’01 (pp. 60–64).

Download references

Acknowledgments

This research was supported in part by the U.S. National Science Foundation under grant ANI-0220287, and by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center) support program supervised by the IITA (Institute for Information Technology Advancement) (IITA-2009-C1090-0902-0003).

Author information

Correspondence to Byung-Seo Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, B., Kim, S.W., Fang, Y. et al. Feedback-assisted MAC protocol for real time traffic in high rate wireless personal area networks. Wireless Netw 16, 1109–1121 (2010). https://doi.org/10.1007/s11276-009-0191-0

Download citation

Keywords

  • Wireless Personal Area Network (WPAN)
  • Wireless MAC
  • Link adaptation
  • Piconet