Wireless Networks

, Volume 16, Issue 3, pp 863–873 | Cite as

Cross-layer enhanced time scheduling for multi-band OFDM UWB networks



Multi-band Orthogonal Frequency Division multiplexing based Ultra Wide-band (MB-OFDM UWB) technology is one of the strong alternatives for high data rate wireless personal area networks (WPANs) with low power consumption. The capacity of such systems is degraded by multi-path fading, shadowing, multi-user interference and noise. To improve system capacity under these adverse effects, in this paper, we devise cross-layer time scheduling methods, Proportional Time Scheduling with Modiano Algorithm (PTS-MA) and Proportional Time Scheduling with Channel State Information (PTS-CSI), in which scheduling and link adaptation are performed using instantaneous bit error probability (IBEP) estimates obtained through Modiano’s algorithm and our novel estimation technique, respectively. We evaluate the performance of the PTS schemes by using numerical experiments. Simulation results suggest PTS-CSI scheduler as the most promising candidate for practical MB-OFDM UWB WPANs with high capacity and fair throughput distribution.


Opportunistic scheduling Link adaptation Multi-band OFDM Ultra-wide band Instantenous bit error estimation 



This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant No. 105E082.


  1. 1.
    Di Benedetto, M. G., & Giancola, G. (2004). Understanding ultra wide band radio fundamentals. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  2. 2.
    Federal Communications Commission. (2002). First report and order 02-48.Google Scholar
  3. 3.
  4. 4.
    Walrand, J., & Varaiya, P. (2000). High-performance communication networks (2nd ed.). San Francisco: Morgan Kaufmann.Google Scholar
  5. 5.
    Cass, S. (2005). Viva mesh vegas. IEEE Spectrum, 42(1), 48–53.CrossRefGoogle Scholar
  6. 6.
    Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Elsevier Computer Networks, 47(4), 445–487.CrossRefMATHGoogle Scholar
  7. 7.
    Fisher, R., Kohno, R., Mc Laughlin, M., Welborn, M. (2004). DS-UWB physical layer submission. Document IEEE 802.15-03.Google Scholar
  8. 8.
    Batra, A., et al. (2003). Multi-band OFDM physical layer proposal. Document IEEE 802.15-03.Google Scholar
  9. 9.
    Batra, A., Balakrishnan, J., Aiello, G. R., Foerster, J. R., & Dabak, A. (2004). Design of a multiband OFDM system for realistic UWB channel environments. IEEE Transactions on Microwave Theory and Techniques, 52(9), 2123–2138. doi: 10.1109/TMTT.2004.834184.CrossRefGoogle Scholar
  10. 10.
    IEEE Std 802.15.3. (2003). IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs).Google Scholar
  11. 11.
    Liu, X., Chong, E. K. P., & Shroff, N. B. (2001). Opportunistic transmission scheduling with resource-sharing constraints in wireless networks. IEEE Journal on Selected Areas in Communications, 19(10), 2053–2064. doi: 10.1109/49.957318.CrossRefGoogle Scholar
  12. 12.
    Jalali, A., Padovani, R., & Pankaj, R. (2000). Data throughput of CDMA-HDR: A high efficiency-high data rate personal communication wireless system. Proceedings of IEEE Vehicular Technology Conference Spring ‘00, (pp. 1854–1858). Tokyo, Japan.Google Scholar
  13. 13.
    Zhang, Z., He, Y., & Chong, E. K. P. (2005). Opportunistic downlink scheduling for multiuser OFDM systems. IEEE Wireless Communications and Networking Conference, 2, 206–1212.Google Scholar
  14. 14.
    Modiano, E. (1999). An adaptive algorithm for optimizing the packet size used in wireless ARQ protocols. Wireless Networks, 5, 279–286. doi: 10.1023/A:1019111430288.CrossRefGoogle Scholar
  15. 15.
    Molisch, A. F., Foerster, J. R., & Pendergrass, M. (2003). Channel models for ultrawideband personal area networks. IEEE Wireless Communications, 10(6), 14–21. doi: 10.1109/MWC.2003.1265848.CrossRefGoogle Scholar
  16. 16.
    Foerster, J., et al. (2003). Channel modeling sub-committee report final, IEEE 802.15-02/490.Google Scholar
  17. 17.
    Leon-Garcia, A., & Widjaja, I. (2004). Communication networks: fundamental concepts and key architectures. New York, NY: McGraw-Hill.Google Scholar
  18. 18.
    Rangnekar, A., & Sivalingam, K. M. (2004). Multiple channel scheduling in UWB based IEEE 802.15.3 networks. First International Conference on Broadband Networks (pp. 406–415).Google Scholar
  19. 19.
    Ranran, Z., & Geng-Sheng, K. (2005). A novel scheduling scheme and MAC enhancements for IEEE 802.15.3 high-rate WPAN. IEEE Wireless Communications and Networking Conference, 4, 2478–2483.CrossRefGoogle Scholar
  20. 20.
    Wessman, M.-O., & Svensson, A., Agrell, F. (2004). Frequency diversity performance of coded multiband-OFDM systems on IEEE UWB Channels, IEEE Vehicular Technology Conference (pp. 1197–1201).Google Scholar
  21. 21.
    Goldsmith, A. (2005). Wireless communications (1st ed.). New York, NY: Cambridge University Press.Google Scholar
  22. 22.
    Golub, G., & Van Loan, C. F. (1996). Matrix computations (3rd ed.). Baltimore, MD: The Johns Hopkins University Press.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Faculty of Engineering & Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations