Wireless Networks

, Volume 16, Issue 6, pp 1525–1539 | Cite as

Hybrid simulation of Sensor and Actor Networks with BARAKA

  • Thomas Halva Labella
  • Isabel Dietrich
  • Falko Dressler


We present BARAKA, a new hybrid simulator for Sensor and Actor Networks (SANETs). This tool provides integrated simulation of communication networks and robotic aspects. It allows the complete modelling of co-operation issues in SANETs including the performance evaluation of either robot actions or networking aspects while considering mutual impact. This hybrid simulation enables new potentials in the evaluation of algorithms developed for communication and co-operation in SANETs. Previously, evaluations in this context were accomplished separately. On the one hand, network simulation helps to measure the efficiency of routing or medium access. On the other hand, robot simulators are used to evaluate the physical movements. Using two different simulators might introduce inconsistent results, and might make the transfer on real hardware harder. With the development of methods and techniques for co-operation in SANETs, the need for integrated evaluation environment increased. To compensate this demand, we developed BARAKA.


Sensor and Actor Networks Simulation Rigid-body simulation OMNeT++ 



Thomas Halva Labella thanks the DAAD (Deutscher Akademischer Austausch Dienst), grant number 331 4 03 003, for the fellowship that funded this work.


  1. 1.
    Akyildiz, I., & Kasimoglu, I. (2004). Wireless sensor and actor networks: Research challenges. Ad Hoc Networks, 2, 351–367.Google Scholar
  2. 2.
    Melodia, T., Pompili, D., Gungor, V., & Akyildiz, I. (2005). A distributed coordination framework for wireless sensor and actor networks. In: Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (ACM Mobihoc 2005) (pp. 99–110). New York, NY: ACM Press.Google Scholar
  3. 3.
    Batalin, M., & Sukhatme, G. (2004). Using a sensor network for distributed multi-robot task allocation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA2004) (Vol. 1, pp.158–164). New York, NY: IEEE Press.Google Scholar
  4. 4.
    Melodia, T., Pompili, D., & Akyildiz, I. (2006). A communication architecture for mobile wireless sensor and actor networks. In: Proceedings of IEEE Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2006). New York, NY: IEEE Press.Google Scholar
  5. 5.
    Dressler, F. (2006). Network-centric actuation control in sensor/actuator networks based on bio-inspired technologies. In: 3rd IEEE International Conference on Mobile Ad Hoc and Sensor Systems (IEEE MASS 2006): 2nd International Workshop on Localized Communication and Topology Protocols for Ad hoc Networks (LOCAN 2006), Vancouver, Canada.Google Scholar
  6. 6.
    Labella, T., & Dressler, F. (2006). A bio-inspired architecture for division of labour in SANETs. In: Proceedings of the First IEEE/ACM International Conference on Bio Inspired Models of Network, Information and Computing Systems (BIONETICS 2006). Italy: Cavalese.Google Scholar
  7. 7.
    Manduchi, R., Castano, A., Talukder, A., & Matthies, L. (2005). Obstacle detection and terrain classification for autonomous off-road navigation. Autonomous Robots, 18, 81–102.CrossRefGoogle Scholar
  8. 8.
    Jia, S., Sheng, J., Chugo, D., & Takase, K. (2007). Obstacle recognition for a mobile robot in indoor environments using RFID and stereo vision. In: Proceedings of International Conference on the Mechatronics and Automation, (ICMA 2007) (pp. 2789–2794). New York, NY: IEEE Press.Google Scholar
  9. 9.
    Law, A., & David Kelton, W. (2000). Simulation modeling and analysis (3rd ed.). Boston: McGraw-Hill.Google Scholar
  10. 10.
    Johnson, D., Hu, Y. C., & Maltz, D. (2007). The dynamic source routing protocol (DSR) for mobile ad hoc networks for IPv4. IETF RFC 4728.Google Scholar
  11. 11.
    Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on demand distance vector (AODV) routing. IETF RFC 3561.Google Scholar
  12. 12.
    Fujimoto, R., Perumalla, K., Park, A., Wu, H., Ammar, M., & Riley, G. (2003). Large-scale network simulation: How big? how fast? In: Modeling, Analysis and Simulation of Computer Telecommunications Systems (MASCOTS 2003) (pp. 116–123). New York, NY: IEEE Press.Google Scholar
  13. 13.
    Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A., et al. (2000). Advances in network simulation. IEEE Computer, 33, 59–67.Google Scholar
  14. 14.
    Heidemann, J., Bulusu, N., Elson, J., Intanagonwiwat, C., Lan, K. C., Xu, Y., et al. (2001). Effects of detail in wireless network simulation. In: SCS Multiconference on Distributed Simulation, pp. 3–11Google Scholar
  15. 15.
    Pawlikowski, K., Jeong, H. D., & Lee, J. S. (2002). On credibility of simulation studies of telecommunication networks. IEEE Communications Magazine, 40(1), 132–139.Google Scholar
  16. 16.
    Sundresh, S., Kim, W., & Agha, G. (2004). SENS: A sensor, environment and network simulator. In: Proceedings of the 37th Annual Simulation Symposium (pp. 221–228). New York, NY: IEEE Press.Google Scholar
  17. 17.
    Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing: Special Issue on Mobile Ad Hoc Networking: Research, Trends and Applications, 2, 483–502.Google Scholar
  18. 18.
    Bai, F., & Helmy, A. (2004). A survey of mobility modeling and analysis in wireless ad hoc networks. In: Wireless ad hoc and sensor networks. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  19. 19.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., & Matsubara, H. (1997). Robocup: A challenge AI problem. AI Magazine, 18, 73–85.Google Scholar
  20. 20.
    Gerkey, B., Vaughan, R., & Howard, A. (2003). The player/stage project: Tools for multi-robot and distributed sensor systems. In: Proceedings of the International Conference on Advanced Robotics (ICAR 2003) (pp. 317–323). Portugal: Coimbra.Google Scholar
  21. 21.
    Parker, L. (1997). L-ALLIANCE: Task-oriented multi-robot learning in behavior-based systems. Journal of Advanced Robotics, 11(4), 305–322.Google Scholar
  22. 22.
    Varga, A. (2001). The OMNeT++ discrete event simulation system. In: Proceedings of the 15th European Simulation Multiconference (ESM’2001). Nottingham, UK: European Council for Modelling and Simulation.Google Scholar
  23. 23.
    Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T., Baldassarre, G., et al. (2004). Evolving self-organizing behaviors for a Swarm-Bot. Autonomous Robots, 17, 223–245.CrossRefGoogle Scholar
  24. 24.
    Di Caro, G., Ducatelle, F., & Gambardella, L. (2005). AntHocNet: An adaptive nature-inspired algorithm for routing in mobile ad hoc networks. European Transactions on Telecommunications, Special Issue on Self-organization in Mobile Networking, 16, 443–455.Google Scholar
  25. 25.
    Labella, T. (2007). Division of Labour in Groups of Robots. PhD thesis, Université Libre de Bruxells.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thomas Halva Labella
    • 1
  • Isabel Dietrich
    • 1
  • Falko Dressler
    • 1
  1. 1.Autonomic Networking Group, Department of Computer Science 7University of Erlangen-NurembergErlangenGermany

Personalised recommendations