Wireless Networks

, Volume 16, Issue 2, pp 331–353 | Cite as

A new bandwidth allocation mechanism for next generation wireless cellular networks

  • Polychronis Koutsakis
  • Moisis Vafiadis
  • Aggelos Lazaris
Article

Abstract

In this paper we design and study the performance of a Medium Access Control (MAC) scheme for the multiplexing and the integrated delivery of voice, mobile messaging, IP, gaming and H.264 videoconference traffic over a high-speed cellular TDMA channel with errors and capture. To the best of our knowledge, this is one of the first papers in the literature investigating the integration of actual H.264 video traces and gaming traffic with other types of traffic over wireless networks. Our results show that the proposed scheme achieves high throughput results while preserving the strict Quality of Service (QoS) requirements of each traffic type, and outperforms two efficient schemes previously proposed in the literature.

Keywords

Multiple Access Control Call admission control Cellular networks Multimedia traffic H.264 video Gaming traffic 

References

  1. 1.
  2. 2.
    Passas, N., Skyrianoglou, D., & Merakos, L. (1997). Traffic scheduling in wireless ATM networks. In Proceedings of the IEEE ATM’97 Workshop. Lisbon, Portugal, May 1997.Google Scholar
  3. 3.
    Colombo, G., Lenzini, L., Mingozzi, E., Cornaglia, B., & Santaniello, R. (2002). Extended performance evaluation of PRADOS: A scheduling algorithm for traffic integration in a wireless ATM network. Wireless Networks, 8(2–3), 265–274.MATHCrossRefGoogle Scholar
  4. 4.
    Akyildiz, I. F., McNair, J., Martorell, L. C., Puigjaner, R., & Yesha, Y. (1999). Medium access control protocols for multimedia traffic in wireless networks. IEEE Network, 13(4), 39–47.CrossRefGoogle Scholar
  5. 5.
    Raychaudhuri, D., French, L. J., Siracusa, R. J., Biswas, S. K., Ruixi, Y., Narasimhan, P., et al. (1997). WATMnet: A prototype wireless ATM system for multimedia personal communication. IEEE Journal on Selected Areas in Communications, 15(1), 83–95.CrossRefGoogle Scholar
  6. 6.
    Musumeci, L., Giacomazzi, P., & Fratta, L. (2000). Polling - and contention-based schemes for TDMA- TDD access to wireless ATM networks. IEEE Journal on Selected Areas in Communications, 18(9), 1597–1607.CrossRefGoogle Scholar
  7. 7.
    Dyson, D. A., & Haas, Z. J. (1999). A dynamic packet reservation multiple access scheme for wireless ATM. ACM/Baltzer MONET Journal, 4(2), 87–99.Google Scholar
  8. 8.
    Wang, X., & Chen,Y. (2001). A TDMA/FDD MAC protocol based on a new resource updating scheme. In Proceedings of the IEEE GLOBECOM 2001. San Antonio, USA.Google Scholar
  9. 9.
    Elnoubi, S., & Alsayh, A. M. (2004). A packet reservation multiple access (PRMA)-based algorithm for multimedia wireless system. IEEE Transactions on Vehicular Technology, 53(1), 215–222.CrossRefGoogle Scholar
  10. 10.
    Bianchi, G., Borgonovo, F., Fratta, L., Musumeci, L., & Zorzi, M. (1997). C-PRMA: A centralized packet reservation multiple access for local wireless communications. IEEE Transactions on Vehicular Technology, 46(2), 422–436.CrossRefGoogle Scholar
  11. 11.
    Koutsakis, P., Psychis, S., & Paterakis, M. (2005). Integrated wireless access for videoconference from MPEG-4 and H.263 video coders with voice e-mail and web traffic over wireless networks. IEEE Transactions on Vehicular Technology, 54(5), 1863–1874.CrossRefGoogle Scholar
  12. 12.
    Holliday, T., Goldsmith, A., & Glynn, P. (2002). Wireless link adaptation policies: QoS for deadline constrained traffic with imperfect channel estimates. In Proceedings of the IEEE ICC 2002 (Vol. 5, pp. 3366–3371). New York, USA.Google Scholar
  13. 13.
    Bottigliengo, M., Casetti, C., Chiasserini, C.-F., & Meo, M. (2004). Short-term fairness for TCP flows in 802.11b WLANs. In Proceedings of the IEEE Infocom 2004, Hong Kong, China.Google Scholar
  14. 14.
    Cidon, I., Kodesh, H., & Sidi, M. (1988). Erasure capture and random power level selection in multiple-access systems. IEEE Transactions on Communications COM-36, 3, 263–271.CrossRefGoogle Scholar
  15. 15.
    Daigle, J. N., Giacomazzi, P., & Petorovic, R. (1995). Contention protocol performance in wireless personal communication systems. In Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communication (PIMRC) (pp. 1112–1117). Toronto, Canada.Google Scholar
  16. 16.
    Brasche, G., & Walke, B. (1997). Concepts, services and protocols of the new GSM Phase 2+ General Packet Radio Service. IEEE Communications Magazine, 35(8), 94–104.CrossRefGoogle Scholar
  17. 17.
    Daigle, J. N., & Magalhaes, M. N. (2003). Analysis of packet networks having contention-based reservation with application to GPRS. IEEE/ACM Transactions on Networking, 11(4), 602–615.CrossRefGoogle Scholar
  18. 18.
    Li, Y. (2000). Pilot-symbol aided channel estimation for OFDM in wireless systems. IEEE Transactions on Vehicular Technology, 49(4), 1207–1215.CrossRefGoogle Scholar
  19. 19.
    Koutsakis, P., & Paterakis, M. (2004). Call admission control and traffic policing mechanisms for the transmission of videoconference traffic from MPEG–4 and H.263 video coders in wireless ATM networks. IEEE Transactions on Vehicular Technology, 53(5), 1525–1530.CrossRefGoogle Scholar
  20. 20.
    Chatziperis, S., Koutsakis, P., & Paterakis, M. (2008). A new call admission control mechanism for multimedia traffic over next generation wireless cellular networks. ΙΕΕΕ Transactions on Mobile Computing, 7(1), 95–112.CrossRefGoogle Scholar
  21. 21.
    Vuran, M. C., & Akyildiz, I. F. (2007). A-MAC: Adaptive medium access control for next generation wireless terminals. IEEE/ACM Transactions on Networking, 15(3), 574–587.CrossRefGoogle Scholar
  22. 22.
    Salem, N. B., Buttyan, L., Hubaux, J.-P., & Jacobsson, M. (2003). A charging and rewarding scheme for packet forwarding in multi-hop cellular networks. In Proceedings of the ACM MobiHoc 2003. Maryland, USA.Google Scholar
  23. 23.
    Nanda, S., Goodman, D. J., & Timor, U. (1991). Performance of PRMA: A packet voice protocol for cellular systems. IEEE Transactions on Vehicular Technology, 40, 584–598.CrossRefGoogle Scholar
  24. 24.
    ETSI. Digital Cellular Telecommunications System (Phase 2 +); Technical Realization of the Short Message Service (SMS); Point-to-Point (PP). (GSM 03.40)Google Scholar
  25. 25.
    Hrasnica, H., & Lehnert, R. (2003). Investigation of MAC protocols for broadband PLC networks under realistic traffic conditions. In Proceedings of the ITCom 2003. Orlando, USA, SeptemberGoogle Scholar
  26. 26.
    Tran-Gia, P., Staehle, D., & Leibnitz, K. (2001). Source traffic modeling of wireless applications. International Journal of Electronics and Communications, 55(1), 27–36.CrossRefGoogle Scholar
  27. 27.
    Fitzek, F., Köpsel, A., Wolisz, A., Krishnam, M., & Reisslein, M. (2002). Providing application-level QoS in 3G/4G wireless systems: A comprehensive framework based on multirate CDMA. IEEE Wireless Communications, 9(2), 42–47.CrossRefGoogle Scholar
  28. 28.
    Borella, M. S. (2000). Source models of network game traffic. Computer Communications, 23(4), 403–410.CrossRefGoogle Scholar
  29. 29.
    Dainoti, A., Pescape, A., & Ventre, G. (2005). A packet-level traffic model of starcraft. In Proceedings of the Second IEEE International Workshop on Hot Topics in Peer-to-Peer Systems (HOT-P2P’05). San Diego, USA, July 2005.Google Scholar
  30. 30.
    Wiegand, T., Sullivan, G., & Luthra, A. (2003). Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/lEC 14496 -10 AVC). May 2003.Google Scholar
  31. 31.
    Sullivan, G. J., Topiwala, P. & Luthra, A. (2004). The H.264/AVC advanced video coding standard: Overview and introduction to the fidelity range extensions. In Proceedings of the SPIE Conference on Applications of Digital Image Processing XXVII, Special Session on Advances in the New Emerging Standard:H.264/AVC. Denver, USA, August 2004.Google Scholar
  32. 32.
    Koutsakis, P. (2006). A new model for multiplexed VBR H.263 videoconference traffic. In Proceedings of the IEEE GLOBECOM 2006. San Francisco, USA.Google Scholar
  33. 33.
    Lazaris, A., Koutsakis, P., & Paterakis, M. (2008). A new model for video traffic originating from multiplexed MPEG–4 videoconference streams. Performance Evaluation, 65(1), 51–70.CrossRefGoogle Scholar
  34. 34.
    Heyman, D. P., Tabatabai, A., & Lakshman, T. V. (1992). Statistical analysis and simulation study of video teleconference traffic in ATM networks. IEEE Transactions on Circuits and Systems for Video Technology, 2(1), 49–59.CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Law, A. M. & Kelton, W. D. (1991). Simulation modeling & analysis. 2nd ed. McGraw Hill Inc.Google Scholar
  37. 37.
    Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference. New York: Springer-Verlag.Google Scholar
  38. 38.
    Frey, M., & Ngyuyen-Quang, S. (2000). A gamma-based framework for modeling variable-rate video sources: The GOP GBAR model. IEEE/ACM Transactions on Networking, 8(6), 710–719.CrossRefGoogle Scholar
  39. 39.
    Maglaris, B., Anastassiou, D., Sen, P., Karlsson, G., & Robbins, J. D. (1988). Performance models of statistical multiplexing in packet video communications. IEEE Transactions on Communications, 36(7), 834–844.CrossRefGoogle Scholar
  40. 40.
    Shim, C., Ryoo, I., Lee, J., & Lee, S. (1994). Modeling and call admission control algorithm of variable bit rate video in ATM networks. IEEE Journal on Selected Areas in Communications, 12(2), 332–344.CrossRefGoogle Scholar
  41. 41.
    Adas, A. (1997). Traffic models in broadband networks. IEEE Communications Magazine, 35(7), 82–89.CrossRefGoogle Scholar
  42. 42.
    Jacobs, P. A., & Lewis, P. A. W. (1983). Time series generated by mixtures. Journal of Time Series Analysis, 4(1), 19–36.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Yu, H., Lin, Z., & Pan, F. (2005). An improved rate control algorithm for H.264. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS) 2005 (Vol. 1, pp. 312–315) Kobe, Japan.Google Scholar
  44. 44.
    Jiang, M., & Ling, N. (2006). On Lagrange multiplier and quantizer adjustment for H.264 frame-layer video rate control. IEEE Transactions on Circuits and Systems for Video Technology, 16(5), 663–669.CrossRefGoogle Scholar
  45. 45.
    Baig, E. C. (2006). Will consumers tune in to a tiny TV in their hand? July 2006, [Online] http://www.usatoday.com/tech/wireless/2006-08-17-mobile-tv_x.htm.
  46. 46.
    Cleary, A., & Paterakis, M. (1995). An investigation of stack based algorithms for voice packet transmission in microcellular wireless environments. In Proceedings of the IEEE International Conference on Communications (ICC) (pp. 1375–1381). Seattle, USA, June 1995.Google Scholar
  47. 47.
    Cleary, A., & Paterakis, M. (1997). Design and performance evaluation of an RRA scheme for voice-data channel access in outdoor microcellular wireless environments. Mobile Networks and Applications (MONET) Journal, 21(1), 31–43.CrossRefGoogle Scholar
  48. 48.
    Mitrou, N. M., Lyberopoulos, G. L., & Panagopoulou, A. D. (1993). Voice and data integration in the air-interface of a microcellular mobile communication system. IEEE Transactions on Vehicular Technology, 42(1), 1–13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Polychronis Koutsakis
    • 1
  • Moisis Vafiadis
    • 2
  • Aggelos Lazaris
    • 2
  1. 1.Department of Electrical and Computer EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Department of Electronic and Computer EngineeringTechnical University of CreteChaniaGreece

Personalised recommendations