Wireless Networks

, Volume 16, Issue 1, pp 95–112 | Cite as

DSMeM Streaming: distributed system to mitigate the effects of performance anomaly and user mobility on IEEE 802.11 WLANs

  • Manuel Vilas
  • Raquel Sanchez
  • Xabiel G. Pañeda
  • David Melendi
  • Roberto García
  • Victor García
Article

Abstract

On IEEE 802.11 wireless LANs (WLAN) the clients have control over the handoff procedure; a client decides the best AP (access point) to be associated to and when and where to change its association to a new AP. This simple handoff management technique can have negative effects for both static and mobile clients of the same cell, since some wireless clients remain associated with their current AP even when a better AP is reachable. Combined with handoff latencies, this mobility method can have a negative effect on various services with severe restrictions regarding delivery rate and delay. In this paper, a distributed and transparent system that monitors channel conditions, manages user data based on its knowledge and induces client handoffs when a better AP is reachable, is presented. One of the strongest points of the proposed solution is that it can work in currently deployed IEEE 802.11 WLANs without the server, clients or APs having to introduce new software.

Keywords

Streaming IEEE 802.11 Mobility Handoff 

References

  1. 1.
    ANSI/IEEE Standard 802.11. (2003). LAN MAN Standards Committee of the IEEE Computer Society.Google Scholar
  2. 2.
    Leary, J., & Roshan, P. (2004). Wireless LAN fundamentals. Cisco Press.Google Scholar
  3. 3.
    Cranley, N., & Davis, M. (2005). Performance evaluation of video streaming with background traffic over IEEE 802.11 WLAN networks. In Proceedings ACM WMuNeP’05.Google Scholar
  4. 4.
    Heusse, M., Rousseau, F., Berger-Sabbatel, G., & Duda, A. (2003). Performance anomaly of 802.11b. In Proceedings IEEE Infocom’03.Google Scholar
  5. 5.
    Kotz, D., & Esseien, K. (2005). Analysis of a campus-wide wireless network, wireless networks 11. Springer Science and Business Media.Google Scholar
  6. 6.
    Mishra, A., Shin, M., & Arbaugh, W. (2003). An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Computer Communication Review, 33.Google Scholar
  7. 7.
    Velayos, H., & Karlsson, G. (2004). Techniques to reduce IEEE 802.11b handoff time. In Proceedings IEEE ICC’04.Google Scholar
  8. 8.
    Mhatre, V., & Papagiannaki, K. (2006). Using smart triggers for improved user performance in 802.11 wireless networks. In Proceedings ACM Mobysis’06.Google Scholar
  9. 9.
    Shin, S., Forte, A. G., Singh, A., & Schulzrinne, H. (2004). Reducing MAC layer handoff latency in IEEE 802.11 wireless LANs. In Proceedings ACM MobiWAC’04.Google Scholar
  10. 10.
    Ramani, I., & Savage, S. (2005). SyncScan: Practical fast handoff for 802.11 infrastructure networks. In Proceedings IEEE Infocom’05.Google Scholar
  11. 11.
    Liao, Y., & Gao, L. (2006). Practical schemes for smooth MAC layer handoff in 802.11 wireless networks. In Proceedings IEEE WoWMoM’06.Google Scholar
  12. 12.
    Pack, S., & Choi, Y. (2004). Fast handoff scheme based on mobility prediction in public wireless LAN systems. IEEE Proceeding—Communications, 151.Google Scholar
  13. 13.
    Kassab, M., Belghith, A., Bonnin, J., & Sassi, S. (2005). Fast preauthentication based on proactive key distribution for 802.11 infrastructure networks. In Proceedings ACM WMuNeP’05.Google Scholar
  14. 14.
    Yang, G., Chen, L., Sun, T., Gerla, M., & Sanadidi, M. (2006). Smooth and efficient real-time video transport in presence of wireless networks, ACM transactions on multimedia computing, communications, and applications (TOMCCAP) 2.Google Scholar
  15. 15.
    Razafindralambo, T., Guerin-lassous, I., Iannone, L., & Fdida, S. (2006). Dynamic packet aggregation to solve performance anomaly in 802.11 wireless networks. In Proceedings IEEE/ACM MSWiM’06.Google Scholar
  16. 16.
    Koucheryavy, Y., Moltachanov, D., & Harju, J. (2003). Performance evaluation of live video streaming in 802.11b WLAN environment under different load conditions. Lecture Notes in Computer Science, 2889.Google Scholar
  17. 17.
    Cranley, N., & Davis, M. (2005). Performance evaluation of video streaming with background traffic over IEEE 802.11 WLAN networks. In Proceedings ACM WMuNeP’05.Google Scholar
  18. 18.
    Bai, G., & Williamsom, C. (2004). The effects of mobility on wireless media streaming performance. In Proceedings WNET’04.Google Scholar
  19. 19.
    Vilas, M., Pañeda, X. G., Melendi, D., García, R., & García, V. (2006). Influence of effective handoff latency on live streaming services. In Proceedings CITA’06.Google Scholar
  20. 20.
    Yang, D., Lee, T., Jan, K., Chang, J., & Sunghyun, C. (2006). Performance enhancement of multi-rate IEEE 802.11 WLANs with geographically-scattered stations. IEEE Transactions on Mobile Computing, 5.Google Scholar
  21. 21.
    Zenel, B. A. (1999). A general purpose proxy filtering mechanism for the mobile environment. ACM Wireless Networks, 5.Google Scholar
  22. 22.
    Bruneo, D., Villari, M., Zaia, A., & Puliafito, A. (2003). VoD services for mobile wireless devices. In Proceedings IEEE ISCC’03.Google Scholar
  23. 23.
    Bellavista, P., & Corradi, A. (2004). A QoS management middleware based on mobility prediction for multimedia service continuity in the wireless internet. In Proceedings ISCC’04.Google Scholar
  24. 24.
    Bellavista, P., Corradi, A., & Giannelli, C. (2005). Mobile proxies for proactive buffering in wireless internet multimedia streaming. In Proceedings IEEE ICDCS’05.Google Scholar
  25. 25.
    Kotz, D., & Esseien, K. (2005). Analysis of a campus-wide wireless network, wireless networks 11. Springer Science and Business Media.Google Scholar
  26. 26.
    Vilas, M., Pañeda, X. G., Melendi, D., García, R., & García, V. (2006). Signalling management to reduce roaming effects over streaming services, EUROMICRO SEAA’06.Google Scholar
  27. 27.
    Li, M., Li, F., Claypool, M., & Kinicki, R. (2005). Weather forecasting—predicting performance for streaming video over wireless LANs. In Proceedings ACM NOSSDAV’05.Google Scholar
  28. 28.
    RTSP Proxy KIT. From http://sourceforge.net/projects/rtsp. Retrieved 29 March 2006.
  29. 29.
    Yeo, J., Youssef, M., Henderson, T., & Agrawala, A. (2005). An accurate technique for measuring the wireless side of wireless networks. In Proceedings WiTMeMo’05.Google Scholar
  30. 30.
    Davis, M. (2004). Wireless traffic probe for radio resource management and QoS provisioning in IEEE 802.11 WLANs. In Proceedings ACM MSWiM’04.Google Scholar
  31. 31.
    DNAT with NetFilter. From http://linux-ip.net/html/nat-dnat.html. Last retrieved 12 October 2006.
  32. 32.
    Policy-based routing. From http://www.cisco.com. Last retrieved 12 October 2006.
  33. 33.
    Linux advanced routing & traffic control. http://lartc.org/.
  34. 34.
    Cisco DOT11 association MIB. From http://www.cisco.com. Last retrieved 29 March 2006.
  35. 35.
    Malinen, J. HostAP driver. From http://hostap.epitest.fi/. Retrieved 12 August 2006.
  36. 36.
    Airjack. From http://sourceforge.net/projects/airjack. Retrieved 12 March 2006.
  37. 37.
    ANSI/IEEE standard 802.11g. (2003). LAN MAN standards committee of the IEEE computer society.Google Scholar
  38. 38.
    IEEE 802.11 task group E. From http://grouper.ieee.org/groups/802/11/Reports/tge_update.htm. Retrieved 12 October 2006.
  39. 39.
    Jabri, I., Soudani, A., Krommenacker, N., & Divaux, T. (2006). An approach for load distribution and resource sharing in IEEE 802.11 Networks. In Proceedings ICWMC’06.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Manuel Vilas
    • 1
  • Raquel Sanchez
    • 1
  • Xabiel G. Pañeda
    • 1
  • David Melendi
    • 1
  • Roberto García
    • 1
  • Victor García
    • 1
  1. 1.Computer Science DepartmentUniversity of Oviedo XixónAsturiesSpain

Personalised recommendations