Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Integrated power and handoff control for next generation wireless networks

  • 89 Accesses

  • 4 Citations

Abstract

In this paper, joint downlink power control and handoff design is formulated as optimization problems that are amenable to dynamic programming (DP). Based on the DP solutions which are impractical, two new algorithms suitable for next generation wireless networks are proposed. The first one is an integrated hard handoff/power control scheme that endeavors a tradeoff between three performance criteria: transmitted power, number of handoffs, and call quality. The second is a soft handoff/power control algorithm that also takes into account the additional cost of utilizing soft handoff. The proposed algorithms present a paradigm shift in integrated handoff/power control by capturing the tradeoff between user satisfaction and network overhead, therefore enjoy the advantages of joint resource allocation, and provide significant improvement over existing methods. The achievable gains and the tradeoffs in both algorithms are verified through simulations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Lee, W. C. Y. (1991). Overview of cellular CDMA. IEEE Transactions on Vehicular Technology, 40(2), 291–302.

  2. 2.

    Gilhousen, K. S., Jacobs, I. M., Padovani, R., Viterbi, A. J., Weaver, L. A., & Wheatley, C. E. (1991). On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology, 40(2), 303–312.

  3. 3.

    Jung, P., Baier, P. W., & Steil, A. (1993). Advantages of CDMA and spread spectrum techniques over FDMA and TDMA in cellular mobile radio applications. IEEE Transactions on Vehicular Technology, 42(3), 357–364.

  4. 4.

    Viterbi, A. J., Viterbi, A. M., Gilhousen, K. S., & Zehavi, E. (1994). Soft handoff extends CDMA cell coverage and increases reverse link capacity. IEEE Journal on Selected Areas in Communicatons, 12(8), 1281–1288.

  5. 5.

    Holma, H., & Toskala, A. (2000). WCDMA for UMTS. John Wiley & Sons.

  6. 6.

    Wong, D., & Lim, T. J. (1997). Soft handoffs in CDMA mobile systems. IEEE Personal Communications, 4(6), 6–17.

  7. 7.

    Hanly, S. V. (1995). An algorithm for combined cell-site selection and power control to maximize cellular spread-spectrum capacity. IEEE Journal on Selected Areas in Communications, 13(7), 1332–1340.

  8. 8.

    Yates, R. D., & Huang, C. Y. (1995). Integrated power control and base station assignment. IEEE Transactions on Vehicular Technology, 44(3), 638–644.

  9. 9.

    Papavassiliou, S., & Tassiulas, L. (1998). Improving the capacity in wireless networks through integrated channel base station and power assignment. IEEE Transactions on Vehicular Technology, 47(2), 417–427.

  10. 10.

    Rashid-Farrokhi, F., Tassiulas, L., & Liu, K. J. R. (1998). Joint optimal power control and beamforming in wireless networks using antenna arrays. IEEE Transactions on Communications, 46(10), 1313–1324.

  11. 11.

    Gudmundson, M. (1991). Analysis of handover algorithms. In Proceedings of VTC ’91 (pp. 537–542). St. Louis, MO.

  12. 12.

    Vijayan, R., & Holtzman, J. M. (1993). A model for analyzing handoff algorithms. IEEE Transactions on Vehicular Technology, 42(3), 351–356.

  13. 13.

    Zhang, N., & Holtzman, J. M. (1996). Analysis of handoff algorithms using both absolute and relative measurements. IEEE Transactions on Vehicular Technology, 45(1), 174–179.

  14. 14.

    Asawa, M., & Stark, W. E. (1996). Optimal scheduling of handoffs in cellular networks. IEEE-ACM Transactions on Networking, 4(3), 428–441.

  15. 15.

    Veeravalli, V. V., & Kelly, O. E. (1997). A locally optimal handoff algorithm for cellular communications. IEEE Transactions on Vehicular Technology, 46(3), 603–609.

  16. 16.

    Akar, M., & Mitra, U. (2001). Variations on optimal and suboptimal handoff control for wireless communication systems. IEEE Journal in Selected Areas of Communications, 19(6), 1173–1185.

  17. 17.

    Su, S.-L., Chen, J.-Y., & Huang, J.-H. (1996). Performance analysis of soft handoff in CDMA systems. IEEE Journal on Selected Areas in Communications, 14(9), 1762–1769.

  18. 18.

    Kwon, J. K., & Sung, D. K. (1997). Soft handoff modeling in CDMA cellular systems. In Proceedings of IEEE Vehicular Technology Conference (pp. 1548–1551). Phoenix, AZ.

  19. 19.

    Lee, C.-C., & Steele, R. (1998). Effect of soft and softer handoffs on CDMA system capacity. IEEE Transactions on Vehicular Technology 47(3), 830–841.

  20. 20.

    Kim, D. K., & Sung, D. K. (1999). Characterization of soft handoff in CDMA systems. IEEE Transactions on Vehicular Technology, 48(4), 1195–1202.

  21. 21.

    Chheda, A. (1999). A performance comparison of the CDMA IS-95B and IS-95A soft handoff algorithms. In Proceedings of IEEE Vehicular Technology Conference (pp. 1407–1412). Houston, TX.

  22. 22.

    Kim, J. Y., & Stüber, G. L. (2002). CDMA soft handoff analysis in the presence of power control error and shadowing correlation. IEEE Transactions on Wireless Communications, 1(2), 245–255.

  23. 23.

    Wu, J., Affes, S., & Mermelstein, P. (2003). Forward-link soft-handoff in CDMA with multiple-antenna selection and fast joint power control. IEEE Transactions on Wireless Communications, 2(3), 459–471.

  24. 24.

    Avidor, D., Hegde, N., & Mukherjee, S. (2004). On the impact of the soft handoff threshold and the maximum size of the active group on resource allocation and outage probability in the UMTS system. IEEE Transactions on Wireless Communications 3(2), 565–577.

  25. 25.

    Zhang, N., & Holtzman, J. M. (1998). Analysis of a CDMA soft-handoff algorithm. IEEE Transactions on Vehicular Technology, 47(2), 710–714.

  26. 26.

    Akar, M., & Mitra, U. (2003). Soft handoff algorithms for CDMA cellular networks. IEEE Transactions on Wireless Communications, 2(6), 1259–1274.

  27. 27.

    Prakash, R., & Veeravalli, V. V. (2003). Locally optimal soft handoff algorithms. IEEE Transactions on Vehicular Technology, 52(2), 347–356.

  28. 28.

    Hashem, B., & Strat, E. L. (2000). On the balancing of the base stations transmitted powers during soft handoff in cellular CDMA systems. In Proceedings of the IEEE International Conference on Communications (pp. 1497–1501).

  29. 29.

    Hamabe, K. (2000). Adjustment loop transmit power control␣during soft handover in CDMA cellular systems. In Proceedings of the Vehicular Technology Conference (pp. 1519–1523).

  30. 30.

    Furukawa, H., Harnage, K., & Ushirokawa, A. (2000). SSDT-site selection diversity transmission power control for CDMA forward link. IEEE Journal on Selected Areas in Communications, 18(8), 1546–1554.

  31. 31.

    Daraiseh, A.-G.A., & Landolsi, M. (1998). Optimized CDMA forward link power allocation during soft handoff. In Proceedings of the Vehicular Technology Conference (pp. 1548–1552).

  32. 32.

    Blaise, F., Elicegui, L., Goeusse, F., & Vivier, G. (2002). Power control algorithms for soft handoff users in UMTS. In Proceedings of the Vehicular Technology Conference (pp.␣1110–1114).

  33. 33.

    Chen, Y., & Cuthbert, L. (2003). Optimized downlink transmit power control during soft handover in WCDMA systems. In Proceedings of the Conference on Wireless Communications and Networking (pp. 547–551).

  34. 34.

     3GPP, “Technical specification group radio access network: Radio resource management strategies,” 3G TS 25.922, Version 3.6.0.

  35. 35.

    Gudmundson, M. (1991). Correlation model for shadow fading in mobile radio systems. Electronic Letters, 27(23), 2145–2146.

  36. 36.

    Bertsekas, D. P. (1995). Dynamic programming and optimal control. Belmont, MA: Athena.

  37. 37.

    TIA/EIA/IS-95-A. (1995). Mobile station-base station compatibility standard for dual-mode wideband spread spectrum cellular system. Telecommunications Industry Association.

  38. 38.

    Bertsekas, D. P. (1999). Nonlinear programming. Belmont, MA: Athena.

  39. 39.

    Stüber, G. L. (1996). Principles of mobile communication. Boston, MA: Kluwer.

Download references

Author information

Correspondence to Mehmet Akar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akar, M. Integrated power and handoff control for next generation wireless networks. Wireless Netw 15, 691–708 (2009). https://doi.org/10.1007/s11276-007-0069-y

Download citation

Keywords

  • Power control
  • Handoff
  • Handover
  • Resource allocation
  • Cellular communication systems
  • Hybrid systems
  • Wireless