Wireless Networks

, Volume 15, Issue 3, pp 353–363

SHARE: seamless handover architecture for 3G-WLAN roaming environment

  • Chaegwon Lim
  • Dong-Young Kim
  • Osok Song
  • Chong-Ho Choi
Article

Abstract

For the transition from 3G communication systems to 4G communication systems, 3G-WLAN interworking systems can be a reference model for 4G communication systems. In this paper, we identify challenging problems in 3G-WLAN interworking systems and propose a loosely coupled architecture called SHARE. In SHARE, each WLAN hotspot access point (AP) is equipped with a 3G radio transmission module to generate radio signals for control channels of 3G networks in addition to a WLAN radio module. Consequently, base stations of the 3G networks share their control channels with hotspot APs. By monitoring these channels, mobile nodes can easily detect available WLAN hotspots without probe delay for handovers.

Keywords

Network architecture design 3G-WLAN interworking Seamless handover 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
     3GPP, Technical Specification Group Radio Access Network; User Equipment (UE) procedures in idle mode and procedures for cell reselection in connected mode (Release 6), 3GPP TS 25.304 (2004).Google Scholar
  2. 2.
     3GPP, Technical Specification Group Services and System Aspects; 3GPP system to Wireless Local Area Network (WLAN) interworking; System description (Release 6), 3GPP TS 23.234 (2004).Google Scholar
  3. 3.
    Buddhikot, M., Chandranmenon, G., Han, S., Lee, Y. W., Miller, S., & Salgarelli, L. (2003). Integration of 802.11 and third-generation wireless data networks. In Proceedings of IEEE INFOCOM. San Francisco, CA.Google Scholar
  4. 4.
    Chakravorty, R., Vidales, P., Subramanian, K., Pratt, I., & Crowcroft, J. (2004). Performance issues with vertical handovers-experiences from GPRS cellular and WLAN hot-spots integration. In Proceedings of IEEE PerCom. Orlando, FL.Google Scholar
  5. 5.
    Companies, U. P. (2004). UMA architecture (Stage 2) R1.0.0, http://www.umatechnology.org
  6. 6.
    Dahlman, E., Beming, P., Knutsson, J., Ovesjö, F., Persson, M., & Roobol, C. (1998). WCDMA—the radio interface for future mobile multimedia communications. IEEE Transactions on Vehicular Technology, 47(4), 1105–1118.CrossRefGoogle Scholar
  7. 7.
    Hsieh, R., Seneviratne, A., Soliman, H., & Malki, K. E. (2002). Performance analysis on hierarchical mobile IPv6 with fast-handoff over end-to-end TCP. In Proceedings of IEEE Globecom. Taipei, Taiwan.Google Scholar
  8. 8.
    Hsieh, R., Zhou, Z. G., & Seneviratne, A. (2003). S-MIP: A seamless handoff architecture for mobile IP. In Proceedings of IEEE INFOCOM. San Francisco, CA.Google Scholar
  9. 9.
    IEEE, Part 11: Wireless LAN media access control (MAC) and physical layer (PHY) specification: Higher-speed physical layer extension in the 2.4 GHz band. IEEE Standard 802.11b-1999 (1999).Google Scholar
  10. 10.
    IEEE, Part 11: Wireless LAN media access control (MAC) and physical layer (PHY) specification. IEEE Standard 802.11 (1999).Google Scholar
  11. 11.
    IEEE, IEEE trial-use recommened practice for multi-vendor access point interoperability via an inter-access point protocol across distributions systems supporting IEEE 802.11 operations. IEEE Standard 802.11F (2003).Google Scholar
  12. 12.
    Johnson, D., Perkins, C., & Arkko, J. (2004). Mobility support for IPv6. IETF RFC 3775.Google Scholar
  13. 13.
    Koodli, R. (2004). Fast handovers for mobile IPv6. draft-ietf-mipshop-fast-mipv6-02.txt Google Scholar
  14. 14.
    Malki, K. E. (2004). Low latency handoffs in mobile IPv4. draft-ietf-mobileip-lowlatency-handoffs-v4-09.txt Google Scholar
  15. 15.
    Mishra, A., Shin, M., & Arbaugh, W. (2003). An empirical analysis of the IEEE 802.11 MAC layer handoff process. SIGCOMM Computer Communication Review, 33(2), 93–102.CrossRefGoogle Scholar
  16. 16.
    Perkins, C. (2002). IP mobility support for IPv4. IETF RFC 3344.Google Scholar
  17. 17.
    Puttonen, J., Viinikainen, A., Sulander, M., & Hamalainen, T. (2004). Performance evaluation of the flow-based fast handover method for mobile IPv6 network. In Proceedings of IEEE VTC fall. Los Angeles, CA.Google Scholar
  18. 18.
    Salkintzis, A. K. (2003). Interworking between WLANs and third-generation cellular data networks. In Proceedings of IEEE VTC Spring. Jeju, Korea.Google Scholar
  19. 19.
    Sharma, S., Zhu, N., & Chiueh, T. (2004). Low-latency mobile IP handoff for infrastructure-mode wireless LANs. IEEE Journal on Selected Areas in Communications, 22(4), 643–652.CrossRefGoogle Scholar
  20. 20.
    Soliman, R., Catelluccia, C., Malki, K. E., & Bellier, L. (2004). Hierarchical mobile IPv6 mobility management (HMIPv6). draft-ietf-mipshop-hmipv6-03.txt Google Scholar
  21. 21.
    Velayos, H., & Karlsson G. (2003). KTH technical report TRITA-IMIT-LCN R 03:02, technique to reduce IEEE 802.11b MAC layer handover time. http://www.web.it.kth.se/∼hvelayos/publications.shtm

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Chaegwon Lim
    • 1
  • Dong-Young Kim
    • 1
  • Osok Song
    • 2
  • Chong-Ho Choi
    • 1
  1. 1.School of Electrical Engineering and Computer Science, and ASRISeoul National UniversitySeoulKorea
  2. 2.Samsung Electronics Co.SuwonKorea

Personalised recommendations