Wireless Networks

, Volume 15, Issue 1, pp 111–126 | Cite as

AdHoc Probe: end-to-end capacity probing in wireless ad hoc networks

  • Ling-Jyh Chen
  • Tony Sun
  • Guang Yang
  • M. Y. Sanadidi
  • Mario Gerla
Article

Abstract

Knowledge of end-to-end path capacity is useful for video/audio stream adaptation, network management and overlay design. Capacity estimation in wired and last-hop wireless networks has been extensively investigated, but a thorough and systematic study in ad hoc, multihop wireless networks is still lacking. Yet the rate of a wireless link can change dynamically (and rapidly) due to changes in interference, distance or energy optimization policy. Timely knowledge of path capacity is key to efficient routing, traffic management and application deployment. In this paper, we present AdHoc Probe, a packet-pair based technique, to estimate end-to-end path capacity in ad hoc wireless networks. We apply AdHoc Probe to path capacity estimation in auto rate wireless networks with variable displacement and interference; and, in remote wireless networks across the Internet. Using analysis, simulation and testbed experiments, we show AdHoc Probe can withstand mobility and is able to trace the rate adaptation of wireless networks timely and correctly. AdHoc Probe is simpler, faster and much less intrusive than current schemes.

Keywords

Ad hoc path capacity estimation Applications Analytical/simulation and experimental validation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Network simulator (ns-2). http://www.mash.cs.berkeley.edu/ns/
  2. 2.
  3. 3.
    Balk, A., Gerla, M., Sanadidi, M., & Maggiorini, D. (2004). Adaptive video streaming: Pre-encoded mpeg-4 with bandwidth scaling. Elsevier Computer Networks, 44, 415–439.CrossRefGoogle Scholar
  4. 4.
    Belding-Royer, E. M., & Perkins, C. E. (2003). Evolution and future directions of the ad hoc on-demand distance vector routing protocol. Ad Hoc Networks Journal, 1, 125–150.CrossRefGoogle Scholar
  5. 5.
    Chen, L. -J., Yang, G., Sun, T., Sanadidi, M. Y., & Gerla, M. (2005). Enhancing qos support for vertical handoffs using implicit/explicit handoff notification. In ICST QShine.Google Scholar
  6. 6.
    Dovrolis, C., Ramanathan, P., & Moore, D. (2001). What do packet dispersion techniques measure? In IEEE Infocom.Google Scholar
  7. 7.
    Dyer, M. E. (1983). Linear algorithms for two- and three-variable linear programs. SIAM Journal on Computing, 13, 31–45.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive mac protocol for multi-hop wireless networks. In ACM MobiCom.Google Scholar
  9. 9.
    Jacobson, V. Pathchar: A tool to infer characteristics of internet paths. ftp://ftp.ee.lbl.gov/pathchar/
  10. 10.
    Ji, Z., Yang, Y., Zhou, J., Takai, M., & Bagrodia, R. (2004). Exploiting medium access diversity in rate adaptive wireless lans. In ACM MobiCom.Google Scholar
  11. 11.
    Kamerman, A., & Monteban, L. (1997). Wavelan ii: A high-performance wireless lan for the unlicensed band. Bell Lab Technical Journal, Summer, 118–133.Google Scholar
  12. 12.
    Kapoor, R., Chen, L. -J., Lao, L., Gerla, M., & Sanadidi, M. Y. (2004). Capprobe: A simple and accurate capacity estimation technique. In ACM SIGCOMM.Google Scholar
  13. 13.
    Lacage, M., Manshaei, M. H., & Turletti, T. (2004). IEEE 802.11 rate adaptation: A practical approach. In ACM MSWiM.Google Scholar
  14. 14.
    Lai, K., & Baker, M. (1999). Measuring bandwidth. In IEEE Infocom, pp. 235–245.Google Scholar
  15. 15.
    Lakshminarayanan, K., Padmanabhan, V. N., & Padhye, J. (2004). Bandwidth estimation in broadband access networks. In IMC.Google Scholar
  16. 16.
    Li, J., Blake, C., Couto, D., Lee, H. I., & Morris, R. (2001). Capacity of ad hoc wireless networks. In ACM MobiCom.Google Scholar
  17. 17.
    Mills, D. L. (1992). Network time protocol specification, implementation and analysis. Technical report, IETF RFC 1305, March 1992.Google Scholar
  18. 18.
    Moon, S. B., Skelly, P., & Towsley, D. (1999). Estimation and removal of clock skew from network delay measurements. In IEEE Infocom.Google Scholar
  19. 19.
    Paxson, V. (1998). On calibrating measurements of packet transit times. In ACM SIGMETRICS.Google Scholar
  20. 20.
    Punnoose, R. J., Nilutin, P. V., & Stancil, D. D. (2000). Efficient simulation of ricean fading within a packet simulator. In IEEE VTC-Fall.Google Scholar
  21. 21.
    Qiao, D., Choi, S., Jain, A., & Shin, K. G. (2003). Miser: An optimal low-energy transmission strategy for IEEE 802.11a/h. In ACM MobiCom.Google Scholar
  22. 22.
    Sadeghi, B., Kanodia, V., Sabharwal, A., & Knightly, E. (2002). Opportunistic media access for multirate ad hoc networks. In ACM MobiCom.Google Scholar
  23. 23.
    Xu, K., Gerla, M., & Bae, S. (2002). How effective is the IEEE 802.11 rts/cts handshake in ad hoc networks? In IEEE Globecom.Google Scholar
  24. 24.
    Xu, K., Hong, X., & Gerla, M. (2002). An ad hoc network with mobile backbones. In IEEE ICC.Google Scholar
  25. 25.
    Zhang, L., Liu, Z., & Xia, C. H. (2002). Clock synchronization algorithms for network measurements. In IEEE Infocom.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ling-Jyh Chen
    • 1
  • Tony Sun
    • 2
  • Guang Yang
    • 2
  • M. Y. Sanadidi
    • 2
  • Mario Gerla
    • 2
  1. 1.Institute of Information ScienceAcademia SinicaTaipeiTaiwan
  2. 2.Department of Computer ScienceUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations