Advertisement

Wireless Networks

, Volume 14, Issue 6, pp 831–858 | Cite as

Controlled sink mobility for prolonging wireless sensor networks lifetime

  • Stefano BasagniEmail author
  • Alessio Carosi
  • Emanuel Melachrinoudis
  • Chiara Petrioli
  • Z. Maria Wang
Article

Abstract

This paper demonstrates the advantages of using controlled mobility in wireless sensor networks (WSNs) for increasing their lifetime, i.e., the period of time the network is able to provide its intended functionalities. More specifically, for WSNs that comprise a large number of statically placed sensor nodes transmitting data to a collection point (the sink), we show that by controlling the sink movements we can obtain remarkable lifetime improvements. In order to determine sink movements, we first define a Mixed Integer Linear Programming (MILP) analytical model whose solution determines those sink routes that maximize network lifetime. Our contribution expands further by defining the first heuristics for controlled sink movements that are fully distributed and localized. Our Greedy Maximum Residual Energy (GMRE) heuristic moves the sink from its current location to a new site as if drawn toward the area where nodes have the highest residual energy. We also introduce a simple distributed mobility scheme (Random Movement or RM) according to which the sink moves uncontrolled and randomly throughout the network. The different mobility schemes are compared through extensive ns2-based simulations in networks with different nodes deployment, data routing protocols, and constraints on the sink movements. In all considered scenarios, we observe that moving the sink always increases network lifetime. In particular, our experiments show that controlling the mobility of the sink leads to remarkable improvements, which are as high as sixfold compared to having the sink statically (and optimally) placed, and as high as twofold compared to uncontrolled mobility.

Keywords

Wireless sensor networks Controlled mobility Mobile sensor networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ASH transceiver designer’s guide (May 19, 2004). www.rfm.com.
  2. 2.
    K. Akkaya and M. Younis, Energy-aware to mobile gateway in wireless sensor networks, in: Proceedings of the IEEE Globecom 2004 Workshops, Dallas (TX) (November 29–December 3, 2004), pp. 16–21.Google Scholar
  3. 3.
    I.F. Akyildiz, W. Su, Y. Sanakarasubramaniam and E. Cayirci, Wireless sensor networks: A survey, Computer Networks 38(4) (2002) 393–422.CrossRefGoogle Scholar
  4. 4.
    P. Baruah, R. Urgaonkar and B. Krishnamachari, Learning-enforced time domain routing to mobile sinks in wireless sensor fields, in: Proceeding of the 29th Annual IEEE International Conference on Local Computer Networks, LCN 2004, Tampa FL (November 16–18, 2004), pp. 525–532.Google Scholar
  5. 5.
    S. Basagni, A. Carosi, E. Melachrinoudis, C. Petrioli and M.Z. Wang, A new MILP formulation and distributed protocols for wireless sensor networks lifetime maximization, in: Proceedings of the IEEE International Conference on Communications, ICC 2006, Istanbul Turkey (June 11–15, 2006).Google Scholar
  6. 6.
    S. Basagni, A. Carosi, E. Melachrinoudis, C. Petrioli and M.Z. Wang, Protocols and model for sink mobility in wireless sensor networks, ACM Mobile Computing and Communication Review, MC2R, 10(4) (October 2006) 28–30.Google Scholar
  7. 7.
    S. Basagni, M. Elia and R. Ghosh, ViBES: Virtual backbone for energy saving in wireless sensor networks, in: Proceedings of the IEEE Military Communication Conference, MILCOM 2004, Monterey CA (October 31–November 3, 2004).Google Scholar
  8. 8.
    E.H. Callaway, Jr., Wireless Sensor Networks: Architectures and Protocols. Auerbach Publications, Boca Raton FL (August 2003).Google Scholar
  9. 9.
    A. Chakrabarti, A. Sabharwal and B. Aazhang, Using predictable observer mobility for power efficient design of sensor networks. In: F. Zhao and L. Guibas (eds.), Proceedings of the Second International Workshop on Information Processing in Sensor Networks, IPSN 2003, LNCS 2634, Palo Alto CA (April 22–23, 2003), pp. 129–145.Google Scholar
  10. 10.
    J.-H. Chang and L. Tassiulas, Maximum lifetime routing in wireless sensor networks, IEEE Transactions on Networking 12(4) (2004) 609–619.Google Scholar
  11. 11.
    I. Chatzigiannakis and S. Nikoletseas, An adaptive compulsory protocol for basic communications in highly changing ad-hoc mobile networks, in: Proceedings of the International Parallel and Distributed Processing Symposium, IPDPS 2002, Fort Lauderdale FL (April 15–19, 2002), pp. 193–202.Google Scholar
  12. 12.
    I. Chatzigiannakis, S. Nikoletseas and P. Spirakis, An efficient communication strategy for ad-hoc mobile networks, in: Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed Computing, PODC 2001, Newport, RI (August 26–29, 2001), pp. 320–332.Google Scholar
  13. 13.
    E. Ekici, Y. Gu and D. Bozdag, Mobility-based communication in wireless sensor networks, IEEE Communications Magazine 44(7) (2006) 56–62.CrossRefGoogle Scholar
  14. 14.
    S.R. Gandham, M. Dawande, R. Prakash and S. Venkatesan, Energy efficient schemes for wireless sensor networks with multiple mobile base stations, in: Proceedings of IEEE Globecom 2003, vol. 1, San Francisco, CA (December 1–5, 2003), pp. 377–381.Google Scholar
  15. 15.
    M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York, NY (1979).zbMATHGoogle Scholar
  16. 16.
    D.K. Goldenberg, J. Lin, A.S. Morse, B.E. Rosen and Y.R. Yang, Towards mobility as a network control primitive, in: Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2004, Roppongi Hills, Tokyo, Japan (May 24–26, 2004), pp. 163–174.Google Scholar
  17. 17.
    M. Grossglauser and D.N.C. Tse, Mobility increases the capacity of ad-hoc wireless networks, IEEE/ACM Transactions on Networking 10(4) (2002) 477–486.CrossRefGoogle Scholar
  18. 18.
    A. Howard, M.J. Matarić and G.S. Sukhatme, An incremental deployment algorithm for mobile sensor networks, in: G.S. Sukhatme (ed.), Kluwer Autonomous Robots, Special Issue on Intelligent Embedded Systems 13(2) (2002) 113–126.Google Scholar
  19. 19.
    A. Howard, M.J. Matarić and G.S. Sukhatme, Mobile sensor networks deployment using potential fields: A distributed, scalable solution to the area coverage problem, in: Proceedings of the 6th International Symposium on Distributed Autonomous Robotic Systems, DARS 2002, Fukuoka Japan (June 25–27, 2002).Google Scholar
  20. 20.
    X. Hu, Y. Liu, M.J. Lee and T.N. Saadawi, A novel route update design for wireless sensor networks, ACM Mobile Computing and Communications Review 8(1) (2004) 18–26.CrossRefGoogle Scholar
  21. 21.
    K. Hwang, J. In, Y. Yun and D. Eom, Dynamic sink oriented tree algorithm for efficient target traking of multiple mobile sink users in wide sensor fields, in: Proceedings of the 60th IEEE Vehicular Technology Conference, VTC 2004-Fall, vol. 7, Los Angeles, CA (September 26–29, 2004) pp. 4607–4610.Google Scholar
  22. 22.
    C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva, Directed diffusion for wireless sensor networking, IEEE/ACM Transactions on Networking 11(1) (2003) 2–16.CrossRefGoogle Scholar
  23. 23.
    S. Jain, R. C. Shah, W. Brunette, G. Borriello and S. Roy, Exploiting mobility for energy-efficient data collection in sensor networks, in: Proceedings of the IEEE Workshop on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, WiOpt 2004, Cambridge UK (March 24–26, 2004).Google Scholar
  24. 24.
    D. Jea, A.A. Somasundara and M.B. Srivastava, Multiple controlled mobile elements (data mules) for data collection in sensor networks. In: V. K. Prasanna, S. Iyengar, P. G. Spirakis and M. Welsh (eds.), Proceedings of the 1st IEEE International Conference on Distributed Computing in Sensor Systems, DCOSS 2005, vol. 3560 of LNCS, Marina del Rey, CA (June 30–July 1, 2005), pp. 244–257.Google Scholar
  25. 25.
    J.G. Jetcheva and D.B. Johnson, Adaptive demand-driven multicast routing in multi-hop wireless ad hoc networks, in: Proceedings of the 2nd ACM International Symposium on Mobile Ad Hoc Networking & Computing, MobiHoc 2001, Long Beach, CA (October 4–5, 2001), pp. 33–44.Google Scholar
  26. 26.
    P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh and D. Rubenstein, Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet, in: Proceedings of the 10th International Conference on Architecural Support for Programming Languages and Operating Systems, ASPLOS-X, San Jose, CA (October 5–9, 2002), pp. 96–107.Google Scholar
  27. 27.
    H. Jun, W. Zhao, M.H. Ammar, E.W. Zegura and C. Lee, Trading latency for energy in wireless ad hoc networks using message ferrying, in: Proceedings of the 3rd IEEE International Conference on Pervasive Computing and Communications, PerComm 2005, Kawai, HA (March 8–12, 2005), pp. 220–225.Google Scholar
  28. 28.
    A. Kansal, A.A. Somasundara, D.D. Jea, M.B. Srivastava and D. Estrin, Intelligent fluid infrastructure for embedded networks, in: Proceedings of the 2nd ACM/SIGMOBILE International Conference on Mobile Systems, Applications, and Services, MobySys 2004, Boston, MA (June 6–9, 2004), pp. 111–124.Google Scholar
  29. 29.
    H.S. Kim, T.F. Abdelzaher and W.H. Kwon, Minimum energy asynchronous dissemination to mobile sinks in wireless sensor networks, in: Proceedings of the First International Conference on Embedded Networked Sensor Systems, SenSys 2003, Los Angeles, CA (November 5–7, 2003), pp. 193–204.Google Scholar
  30. 30.
    Q. Li and D. Rus, Sending messages to mobile users in disconnected ad-hoc wireless networks, in: Proceedings of 6th ACM Annual International Conference on Mobile Computing and Networking, MobiCom 2000, Boston, MA (August 6–11, 2000), pp. 44–55.Google Scholar
  31. 31.
    J. Luo and J.-P. Hubaux, Joint mobility and routing for lifetime elongation in wireless sensor networks, in: Proceedings of IEEE Infocom 2005, vol. 3, Miami, FL (March 13–17, 2005), pp. 1735–1746.Google Scholar
  32. 32.
    V.P. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar and N. Shroff, A minimum cost heterogeneous sensor network with a lifetime contraint, IEEE Transactions on Mobile Computing 4(1) (2005) 4–15.CrossRefGoogle Scholar
  33. 33.
    C.E. Miller, A.W. Tucker and R.A. Zemlin, Integer programming formulation of traveling salesman problems, Journal of the ACM 7(4) (1960) 311–325.CrossRefMathSciNetGoogle Scholar
  34. 34.
    M. Mukarram Bin Tariq, M.H. Ammar and E.W. Zegura, Message ferry route design for sparse ad hoc networks with mobile nodes, in: Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2006, Firenze, Italy (May 22–25, 2006), pp. 37–48.Google Scholar
  35. 35.
    I. Papadimitriou and L. Georgiadis, Maximum lifetime routing to mobile sink in wireless sensor networks, in: Proceedings of the 2005 International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2005, Split, Croatia (September 15–17, 2005).Google Scholar
  36. 36.
    R. Rao and G. Kesidis, Purposeful mobility for relaying and surveillance in mobile ad hoc sensor networks, IEEE Transactions on Mobile Computing 3(3) (2004) 225–232.CrossRefGoogle Scholar
  37. 37.
    A. Savvides and M.B. Srivastava, Location discovery. In: S. Basagni, M. Conti, S. Giordano and I. Stojmenovic (eds.), Mobile Ad Hoc Networking, chap. 8, pp. 231–254. IEEE Press and John Wiley and Sons, Inc., Piscataway, NJ and New York, NY, (2004).Google Scholar
  38. 38.
    R.C. Shah, S. Roy, S. Jain and W. Brunette, Data MULEs: Modeling a three-tier architecture for sparse sensor networks, in: Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, SNPA 2003, Anchorage, AK (May 11, 2003), pp. 30–41.Google Scholar
  39. 39.
    T. Small and Z.J. Haas, Resource and performance tradeoffs in delay-tolerant wireless networks, in: Proceedings of the ACM SIGCOMM 2005 Workshop on Delay-Tolerant Networking and Related Networks, WDTN 2005, Philadelphia, PA (August 22–26, 2005).Google Scholar
  40. 40.
    A.A. Somasundara, A. Ramamoorthy and M.B. Srivastava, Mobile element scheduling for efficient data collection in wireless sensor networks with dynamic deadlines, in: Proceedings of the 25th IEEE International Real-Time Systems Symposium, RTSS 2004, Lisbon, Portugal (December 5–8, 2004), pp. 296–305,.Google Scholar
  41. 41.
    L. Song and D. Hatzinakos, Dense wireless sensor networks with mobile sinks, in: Proceedings of the IEEE International Conference on Acoustic Speech, and Signal Processing, ICASSP 2005, vol. 3, Philadelphia, PA (March 18–23, 2005), pp. 677–680.Google Scholar
  42. 42.
    The VINT Project. The ns Manual (2006). http://www.isi.edu/nsnam/ns/.
  43. 43.
    Y. Tirta, B. Lau, N. Malhotra, S. Bagchi, Z. Li and Y.-H. Lu, IEEE Monograph on Sensor Network Operations, in: S. Phoha and T. F. La Porta (eds.), chapter Controlled Mobility for Efficient Data Gathering in Sensor Networks with Passively Mobile Nodes. IEEE Press and John Wiley and Sons, Inc., Piscataway, NJ (December 2, 2005).Google Scholar
  44. 44.
    Y. Tirta, Z. Li, Y.-H. Lu and S. Bagchi, Efficient collection of sensor data in remote fields using mobile collectors, in: Proceedings of the 13th International Conference on Computer Communications and Networks, ICCCN 2004, Chicago, IL (October 11–13, 2004), pp. 515–519.Google Scholar
  45. 45.
    L. Tong, Q. Zhao and S. Adireddy, Sensor networks with mobile agents, in: Proceedings of the IEEE Military Communication Conference, MILCOM 2003, vol. 1, Boston, MA (October 13–16, 2003), pp. 705–710.Google Scholar
  46. 46.
    P. Venkitasubramaniam, S. Adireddy and L. Tong, Sensor networks with mobile agents: Optimal random access and coding, IEEE Journal on Selected Areas in Communications 22(6) (2004) 1058–1068.CrossRefGoogle Scholar
  47. 47.
    P. Venkitasubramaniam, Q. Zhao and L. Tong, Sensor networks with multiple mobile access points, in: Proceedings of the 38th Annual Conference on Information Sciences and Systems, CISS 2004, Princeton, NJ (March 17–19, 2002).Google Scholar
  48. 48.
    G. Wang, G. Cao and T.F. La Porta, A bidding protocol for deploying mobile sensors, in: Proceedings of the 11th IEEE International Conference on Networks Protocols, ICNP 2003, Atlanta, GA (November 4–7, 2003), pp. 315–324.Google Scholar
  49. 49.
    G. Wang, G. Cao and T.F. La Porta, Movement-assisted sensor deployment, in: Proceedings of IEEE INFOCOM 2004, vol. 4, Hong Kong (March 7–11, 2004), pp. 2469–2479.Google Scholar
  50. 50.
    G. Wang, G. Cao and T.F. La Porta, Proxy-based sensor deployment for mobile sensor networks, in: Proceedings of the First IEEE International Conference on Mobile Ad Hoc and Sensor Systems, MASS 2004, Fort Lauderdale, FL (October 25–27, 2004), pp. 493–502.Google Scholar
  51. 51.
    G. Wang, G. Cao, T.F. La Porta and W. Zhang, Sensor relocation in mobile sensor networks, in: Proceedings of IEEE INFOCOM 2005, vol. 4, Miami, FL (March 13–17, 2005), pp. 2302–2312.Google Scholar
  52. 52.
    W. Wang, V. Srinivasan and K.-C. Chua, Using mobile relays to prolong the lifetime of wireless sensor networks, in: Proceedings of the 11th Annual ACM/SIGMOBILE International Conference on Mobile Computing and Networking, MobiCom 2005, Cologne Germany (August 28–September 2, 2005), pp. 270–283.Google Scholar
  53. 53.
    Z.M. Wang, S. Basagni, E. Melachrinoudis and C. Petrioli, Exploiting sink mobility for maximizing sensor networks lifetime, in: Proceedings of the 38th Hawaii International Conference on System Sciences, Big Island Hawaii (January 3–6, 2005).Google Scholar
  54. 54.
    H.L. Xuan and S. Lee, A coordination-based data dissemination protocol for wireless sensor networks, in: Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, ISSNIP 2004, Melbourne Australia (December 14–17, 2004), pp. 13–18.Google Scholar
  55. 55.
    F. Ye, H. Luo, J. Cheng, S. Lu and L. Zhang, A two-tier data dissemination model for large scale wireless sensor networks, in: Proceedings of the 8th ACM Annual International Conference on Mobile Computing and Networking, MobiCom 2002, Atlanta, GA (September 23–28, 2002), pp. 148–159.Google Scholar
  56. 56.
    W. Zhao, M.H. Ammar and E.W. Zegura, A message ferrying approach for data delivery in sparse mobile ad hoc networks, in: Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2004, Roppongi Hills, Tokyo, Japan (May 24–26, 2004), pp. 187–198.Google Scholar
  57. 57.
    W. Zhao, M.H. Ammar and E.W. Zegura, Controlling the mobility of multiple data transport ferries in a delay-tolerant network, in: Proceedings of IEEE Infocom 2005, vol. 2, Miami, FL (March 13–17, 2005), pp. 1407–1418.Google Scholar
  58. 58.
    M. Zorzi and R.R. Rao, Geographic random forwarding (GeRaF) for ad hoc and sensornetworks: Energy and latency performance, IEEE Transactions on Mobile Computing 2(4) (2003) 349–365.CrossRefGoogle Scholar
  59. 59.
    M. Zorzi and R.R. Rao, Geographic random forwarding (GeRaF) for ad hoc and sensor networks: Multihop performance, IEEE Transactions on Mobile Computing 2(4) (2003) 337–348.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Stefano Basagni
    • 1
    Email author
  • Alessio Carosi
    • 2
  • Emanuel Melachrinoudis
    • 3
  • Chiara Petrioli
    • 2
  • Z. Maria Wang
    • 3
  1. 1.Department of Electrical and Computer EngineeringNortheastern UniversityBostonUSA
  2. 2.Dipartimento di InformaticaUniversità di Roma “La Sapienza”RomaItaly
  3. 3.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA

Personalised recommendations