Advertisement

Wireless Networks

, Volume 12, Issue 6, pp 709–721 | Cite as

Energy efficient node-to-node authentication and communication confidentiality in wireless sensor networks

  • Roberto Di Pietro
  • Luigi V. Mancini
  • Alessandro Mei
Article

Abstract

A distributed Wireless Sensor Network (WSN) is a collection of low-end devices with wireless message exchange capabilities. Due to the scarcity of hardware resources, the lack of network infrastructures, and the threats to security, implementing secure pair-wise communications among any pair of sensors is a challenging problem in distributed WSNs. In particular, memory and energy consumption as well as resilience to sensor physical compromise are the most stringent requirements. In this paper, we introduce a new threat model to communications confidentiality in WSNs, the smart attacker model. Under this new, more realistic model, the security features of previously proposed schemes decrease drastically. We then describe a novel pseudo-random key pre-deployment strategy ESP that combines all the following properties: (a) it supports an energy-efficient key discovery phase requiring no communications; (b) it provides node to node authentication; (c) it is highly resistant to the smart attacker.We provide both asymptotic results and extensive simulations of the schemes that are beingproposed.

Keywords

Key management Wireless sensor networks Confidentiality Probabilistic authentication Information leakage Energy saving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Adamy, Ew 101: A First Course in Electronic Warfare (Artech House Publisher, 2001).Google Scholar
  2. [2]
    I.F. Akyildiz, Y. Sankarasubramaniam, W. Su and E. Cayirc, Wireless sensor networks: A survey, Journal of Computer Networks 38 (2002) 393–422.Google Scholar
  3. [3]
    A.D. Amis, R. Prakash, T.H.P. Vuong and D.T. Huynh, Max-min D-cluster formation in wireless ad hoc networks, in Proceedings of IEEE INFOCOM 2000 (March 2000) pp. 32–41.Google Scholar
  4. [4]
    R. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems (John Wiley & Sons, Inc., 2001) ISBN 0-471-38922-6.Google Scholar
  5. [5]
    R. Anderson and M. Kuhn, Tamper resistance—A cautionary note, in The 2nd USENIX Workshop on Electronic Commerce Proceedings (1996) pp. 1–11.Google Scholar
  6. [6]
    R. Anderson, H. Chan and A. Perrig, Key infection: Smart trust for smart dust, in Proceedings of IEEE International Conference on Network Protocols (ICNP 2004) (2004).Google Scholar
  7. [7]
    S. Basagni, K. Herrin, D. Bruschi and E. Rosti, Secure pebblenets, in Proceedings of the 2001 ACM International Symposium on Mobile ad hoc networking & computing, Long Beach, CA, USA (2001) pp. 156–163. ACM Press.Google Scholar
  8. [8]
    R. Blom, An optimal class of symmetric key generation systems, in Springer-Verlag, editor, Advances in Cryptology: Proceedings of EUROCRYPT ’84, vol. 338 of LNCS (1985).Google Scholar
  9. [9]
    C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro and M. Yung, Perfectly-secure key distribution for dynamic conferences, in Springer-Verlag, editor, Advances in Cryptology: Proceedings of CRYPTO ’92, vol. 740 of LNCS (1993).Google Scholar
  10. [10]
    D.W. Carman, P.S. Kruus and B.J. Matt, Constraints and approaches for distributed sensor network security, Technical Report #00-010, NAI Labs (2000).Google Scholar
  11. [11]
    H. Chan, A. Perrig and D. Song, random key predistribution schemes for sensor networks, in Proceedings of the IEEE Symposium on Security and Privacy, Oakland, California, USA, (11–14, May 2003) pp. 197–213.Google Scholar
  12. [12]
    J.-H. Chang and L. Tassiulas, Maximum lifetime routing in wireless sensor networks, IEEE/ACM Trans. Netw., 12(4) (2004) 609–619.CrossRefGoogle Scholar
  13. [13]
    Crossbow Technology Inc., URL: http://www.xbow.com.
  14. [14]
    R. Di Pietro, L.V. Mancini and S. Jajodia, Providing secrecy in key management protocols for large wireless sensors networks, Journal of AdHoc Networks, 1(4) (2003) 455–468.CrossRefGoogle Scholar
  15. [15]
    R. Di Pietro, L.V. Mancini and A. Mei, Efficient and resilient key discovery based on pseudo-random key pre-deployment, in: Proceedings of the IEEE 4th International Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN ’04), April 2004, Santa Fe, New Mexico, USA, (2004) pp. 26–30.Google Scholar
  16. [16]
    R. Di Pietro, L.V. Mancini and A. Mei, Random key-assignment for secure wireless sensor networks, in Proceedings of the 1st ACM workshop on Security of Ad Hoc and Sensor Networks (SASN’03), ACM Press (2003) pp. 62–71.Google Scholar
  17. [17]
    R. Di Pietro, A. Mei, L.V. Mancini, A. Panconesi and J. Radhakrishnan, Connectivity properties of secure wireless sensor networks, in Proceedings of the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN’04), ACM Press (2004) pp. 53–68.Google Scholar
  18. [18]
    R. Di Pietro, Security issues for wireless sensor networks, PhD thesis, Università “La Sapienza”, Dipartimento di Informatica, Roma-Italy (Feb. 2004).Google Scholar
  19. [19]
    D. Dolev and A.C. Yao, On the security of public key protocols, IEEE Transactions on Information Theory 29(2) (1983) 198–208.MATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    J.R. Douceur, The Sybil Attack, Revised Papers from the First International Workshop on Peer-to-Peer Systems, (2002) 251–260.Google Scholar
  21. [21]
    W. Du, J. Deng, Y.S. Han and P.K. Varshney, A pairwise key predistribution scheme for wireless sensor networks, in: Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS ’03), Washington D.C., USA (27–31 Oct. 2003).Google Scholar
  22. [22]
    M. Eltoweissy, A. Wadaa, S. Olariu and L. Wilson, Group key management scheme for large-scale wireless sensor network, Journal of Ad-Hoc Networks 3(1) (2005) 668–688.Google Scholar
  23. [23]
    L. Eschenauer and V.D. Gligor, A key-management scheme for distributed sensor networks, in Proceedings of the 9th ACM Conference on Computer and Communications Security, (2002) pp. 41–47. ACM Press.Google Scholar
  24. [24]
    O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions, Journal of the ACM, 33(4) (1986) 792–807.MathSciNetCrossRefGoogle Scholar
  25. [25]
    O. Goldreich, Foundations of Cryptography: Basic Tools. Cambridge University Press, (August 2001) ISBN 0521791723.Google Scholar
  26. [26]
    B. Hong and V.K. Prasanna, Optimizing a class of in-network processing applications in networked sensor systems, in Proceedings of the 1st IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS’04), IEEE Press (2004) pp. 154–163.Google Scholar
  27. [27]
    J.M. Kahn, R.H. Katz and K.J. Pister. Mobile networking for smart dust, in: Proceedings of the ACM/IEEE Intl. Conf. on Mobile Computing and Networking (MobiCom99) (ACM Press 1999) pp. 271–278.Google Scholar
  28. [28]
    C. Karlof and D. Wagner, Secure routing in wireless sensor networks: Attacks and countermeasures, Journal of Adhoc Networks 1(2–3) (2003) 283–315.Google Scholar
  29. [29]
    R. Kumar, V. Tsiatsis and M. B. Srivastava, Computation hierarchy for in-network processing, in Proceedings of the of the 2nd ACM International Conference on Wireless Sensor Networks and Applications (WSNA ’03), ACM Press (2003) pp. 68–77.Google Scholar
  30. [30]
    C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva, Directed diffusion for Wireless Sensor Networking, IEEE/ACM Trans. Netw., 11(1) (February 2003) 2–16.Google Scholar
  31. [31]
    D. Liu and P. Ning, Establishing pairwise keys in distributed sensor networks, in Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS ’03), Washington D.C., USA (27–31 Oct. 2003) pp. 72–82.Google Scholar
  32. [32]
    S. Madden, R. Szewczyk, Michael J. Franklin and David Culler, Supporting aggregate queries over ad-hoc wireless sensor networks, in: Proceedings of the Fourth IEEE Workshop on Mobile Computing Systems and Applications (WMCSA ’02), Washington D.C., USA (2002) pp. 43–58.Google Scholar
  33. [33]
    B.C. Neuman and T. Tso, Kerberos: An authentication service for computer networks, IEEE Communications Magazine, 32(9) (1994) 33–38.CrossRefGoogle Scholar
  34. [34]
    S. Olariu, A. Wadaa, L. Wilson and M. Eltoweissy, Wireless sensor networks—Leveraging the virtual infrastructure, IEEE Network, (July/Aug. 2004) 51–56.Google Scholar
  35. [35]
    A. Perrig, R. Szewczyk, V. Wen, D. Culler and J.D. Tygar, Spins: Security protocols for sensor networks, in Proceedings of the 7 th Annual International Conference on Mobile Computing and Networking (MobiCom’01), ACM Press (2001) pp. 189–199.Google Scholar
  36. [36]
    A. Perrig and J. Stankovic and D. Wagner, Security in wireless sensor networks, in Communications of the ACM, ACM Press 47(6) (2004) 53–57.Google Scholar
  37. [37]
    S. Zhu, S. Xu, S. Setia and S. Jajodia, Establishing pair-wise keys for ad hoc networking: A probabilistic approach, in Proceedings of the 11th IEEE International Conference on Network Protocols (ICNP’03), IEEE Computer Society, Atlanta, Georgia, USA (4–7 November 2003) 326–335.Google Scholar
  38. [38]
    S. Zhu, S. Xu, S. Setia and S. Jajodia, LEAP: efficient security mechanisms for large-scale distributed sensor networks. in Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS ’03), ACM Press, New York, NY, USA (2003) pp. 62–72.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Roberto Di Pietro
    • 1
  • Luigi V. Mancini
    • 1
  • Alessandro Mei
    • 1
  1. 1.Dip.to di InformaticaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations